
PRACA MAGISTERSKA

Metamodel and Workflow Management System for
Object - Oriented Business Processes

Metamodel i system zarządzania przepływem pracy
dla procesów biznesowych zorientowanych

obiektowo

Student Wojciech Bauman

Nr albumu 2901

Promotor dr Andrzej Jodłowski

Specjalność Inżynieria Oprogramowania i Baz Danych

Katedra Systemów Informacyjnych

Data zatwierdzenia tematu 20.04.2006

Data zakończenia pracy 31.04.2007

Podpis promotora pracy Podpis kierownika katedry

...................................

Abstract

This thesis proposes a new approach to workflows and business process management, where processes
and activities are objects capable of infinite nesting. This new model, built around the concepts of Stack-
Based Approach (SBA), involves inherently parallel execution, dynamic process changes at run time,
error handling, and resource management. Throughout this work, the author proposes extension to the
SBA object store, which would enable it to store information about workflows. Complementary to this
augmentation is the Stack-Based Query Language enhancement, which proposes introducing several
new keywords for creating and manipulating business processes. It consists of special operations that
will be performed on process definitions, process instances, activity definitions, and activity instances.
The presented approach is not bound to any existing notation, so processes may be depicted more
flexibly, and without focusing on notation-specific aspects or constraints. Within this thesis, there has
also been developed a prototype implementation of the proposed workflow handling mechanism, written
in Java and using XML files for storage.

Streszczenie

Niniejsza praca magisterska proponuje nowe podejście do zarządzania przepływem pracy oraz proce-
sami biznesowymi, gdzie zarówno procesy, jak i aktywności są obiektami, które można nieskończenie
zagnieżdżać. Ten nowy model, oparty na założeniach podejścia stosowego (ang. stack-based approach,
SBA), uwzględnia inherentnie równoległe wykonywanie procesów, dynamiczne zmiany procesów w
czasie ich wykonywania, obsługę błędów, a także zarządzanie zasobami. W pracy tej, autor proponuje
rozszerzenia dla składu obiektów, które umożliwiłyby przechowywanie informacji na temat procesów
pracy. Prócz tego, zaproponowane jest także rozszerzenie dla języka SBQL, zakładające wprowadze-
nie nowych konstrukcji dla tworzenia oraz manipulowania procesami biznesowymi. Proponowane
rozwiązanie nie jest w żaden sposób związane z żadną istniejącą notacją, tak więc rzeczywiste procesy
pracy mogą być odwzorowane bardziej elastycznie oraz bez skupiania się na aspektach czy ograniczeni-
ach właściwych dla danej notacji. W ramach niniejszej rozprawy, została także rozwinięta prototy-
powa implementacja zaproponowanego podejścia do zarządzania procesami biznesowymi, stworzona
w języku Java oraz wykorzystująca pliki XML do przechowywania danych.

Contents

1 Introduction to business process management 6
1.1 Explanation of terms and introduction to the subject 6
1.2 State of the art in the workflow management systems 7
1.3 Notations and theoretical foundations of workflow management systems 10

Petri net . 10
UML activity diagrams . 11
BPMN as an UML extension . 11
PERT charts . 14
The new approach to workflows . 15

1.4 Business process management solutions available on the market 15

2 Augmenting the Stack-Based Approach with workflow capabilities 17
2.1 Stack Based Approach and Stack Based Query Language extensions 17
2.2 SBA object store extension for storage of workflow processes 19

Activity definition . 19
Activity instance . 20
Process definition . 23
Process . 24
Attribute . 25
Resource definition . 26
Resource . 26

2.3 SBQL extensions for defining business processes . 26
Creating process definition . 27
Creating process instance . 28
Creating activity definition . 28
Creating activity instance . 29
Manipulating processes . 30
The complete process . 33

3 Supported structures and workflow patterns 37
3.1 Control flow patterns . 37
3.2 Resource patterns . 50
3.3 Data patterns . 57

4 Features and capabilities of the developed workflow management solution 63
4.1 Technologies and tools used . 64
4.2 Two approaches to workflow management . 65
4.3 Process management module and resource management module 65
4.4 Running an example process . 66

5 Design decisions justification and description of the architecture 68
5.1 General description of implemented architecture . 68
5.2 Detailed information about the developed components 68

Process management module . 68
Resource management module . 70

5.3 Description of applied design patterns . 71

Contents 5

6 Summary 73

A Proposed SBA and SBQL Extensions 75
A.1 Stack-Based Approach Object Store Extensions . 75

ActivityDefinition . 75
Activity . 77
ProcessDefinition . 80
Process . 81
Attribute . 81
Resource . 81
ResourceDefinition . 82
Example process . 82

A.2 Stack-Based Query Language Extensions . 85

B Workflow process schema documentation 86

C API documentation for the process and resource management modules 91
C.1 Process Manager . 91
C.2 Resource Manager . 92

1 Introduction to business process management

Business process management is nowadays a popular notion throughout the IT field. Starting from
the system developers, through designers, architects, and ending with business analysts or marketing
staff. Everyone uses this term, but it is understood in many different ways. What is more, there are
many workflow management systems, standards, ad-hoc vendor-dependent platforms, and solutions
that evolved from the academic environment. Most of those solutions have common problems that
have not yet been addressed by any standard or vendor-dependent implementation. These problems
can be broken down into several categories: (1) parallel execution, (2) dynamic changes, (3) exception
handling, and (4) resource management. All four mentioned categories will be considered and addressed
throughout this thesis, as well as the prototype implementation. Those issues will be reflected within the
developed Stack-Based Approach and Stack-Based Query Language enhancements. As for today, none
of the existing SBA/SBQL proposed extensions has addressed those problems in a uniform and decent
way.

First one, the lack of parallel process execution, is probably the most troublesome limitation. It fails
to reflect reality, where many processes are carried out in parallel, and only a few of them need to be
aligned in sequential order. This sort of parallelization also needs advanced synchronization and routing
mechanisms that will be able to choose appropriate process paths according to data, events, exceptions,
or preceding tasks’ statuses.

Dynamic process changes is another issue that lacks decent solution in today’s workflow platforms
or models. The process, once instantiated and launched, cannot change its definition until the execution
ends. This approach severely impairs flexibility, because again, processes that occur in real life, tend
to change depending on variety of internal or external factors, and thus are far more variable than their
computer-designed equivalents.

Sometimes, exceptional situations arise during execution of a process. This can be anything from
runtime exception during execution of a computer program, through deadlocks between waiting pro-
cesses, to exceptional situation that resulted from bad or insufficient data and evaluated by the workflow
engine itself. Proper handling of exceptions is the key part of workflow processing and may be useful
when, for example, process should be terminated after a critical error or some special compensation
activities should be executed to leave the system in consistent state.

Resource management is another area that will be addressed. Human or non-human resources could
be allocated in many ways, like according to availability, capabilities (i.e. age or experience in case of
human resources) or roles. Sometimes, particular activities must be performed by specific persons - not
just everyone that satisfied the criteria. This type of allocation should also be supported, without notable
flexibility loss or notational overhead.

As it was stated above, solution developed within this thesis will address all those issues. The pro-
posed object store extension will enable processes to be stored and handled as other objects, and the
Stack-Based Query Language enhancements will deliver functionality to create, instantiate and manip-
ulate workflow processes. Noteworthy is the fact that the proposed approach to business processes is
not tightly bound to any existing notation, hence processes may be depicted with much greater degree
of flexibility, and without focusing on notation-specific aspects or constraints. Also, the XML-based
Java implementation will be developed as a prototype of this flexible, object-oriented business process
management and resource management solution.

1.1 Explanation of terms and introduction to the subject

Business process Series of tasks and outcomes related to some business activity. Consists of subpro-
cesses, activities and decisions. Often, business processes are drawn in order to visualize relationships

State of the art in the workflow management systems 7

between tasks, resources, roles and actions to be carried out. Business process modeling is used to
document, standardize and reengineer business processes.

Activity Part of a business process, usually connected with executing some particular task or proce-
dure. Several activities may be aligned and connected with each other, making up a business process.
Each activity can have resources and/or roles assigned to it. Activities of a business process can be
executed manually or automatically (i.e. as a programming language routine or database procedure).

Workflow More specific definition of a business process - involves operations on documents, struc-
tures of tasks altogether with required performer or resource information and some synchronization and
routing constructs like preconditions, postconditions, and error handling (compensation). Being not a
strict information technology term, workflow in most cases relates to interactions between people and
information systems.

Workflow pattern Specialized form of a design pattern, which in the field of software engineering
is well known as a common solution to recurring problem. Workflow patterns refer to proven solu-
tions in development of applications related to workflow management or business process management.
Probably the best known collection of workflow patterns is contained in the paper [Aalst et al.].

Process manager Software module, also called workflow engine, responsible for instantiating, exe-
cuting and controlling workflow processes. To control a process, by means of a process manager, is to
choose appropriate routes, handle errors and invoke other modules related to workflow, like resource
manager in order to allocate resources to tasks or tasks to performers.

Stack-Based Approach An approach to query languages considering them as a subclass of impera-
tive programming languages, and thus considering all proven notions and methods from programming
languages applicable to query languages. Stack based approach (SBA) to query languages has been
invented by Kazimierz Subieta. As for now, several different implementations of SBA exist.

Stack-Based Query Language Query language which has been designed basing on the concepts
and principles of Stack-Based Approach. SBQL introduces non-algebraic operators, such as selection,
projection, join, and transitive closure. Those operators’ semantics can be easily expressed using envi-
ronmental stack (ENVS) and results stack (QRES).

1.2 State of the art in the workflow management systems

The term "workflow" has been present in the computer science since the early 1980s. Its domain is
thought to evolve from several fields, which include business management, simulation, process mod-
eling and planning. The first aim of workflows was to organize and control processes on which busi-
nesses were based. Another goal was to automate and optimize those processes. Workflow can also be
described as a series of information-intensive activities involving human-machine interactions. Some-
times, the term workflow is confused with business process management (BPM). However, the latter has
a broader scope and involves processes from the business analyst’s or manager’s point of view, while
workflow is used more often in the technical context ([Baeyens]). In some cases, workflow may even
relate to sequence of user interface screens presented to the user of a particular application. In 1993, the
Workflow Management Coalition has been started as the first effort to standardize the workflow field.
Right now it has over 300 member organizations from all over the world, including vendors, consultants

8 State of the art in the workflow management systems

and academic organizations. The so called reference model that has been published by this coalition
defines the interfaces between the workflow management system and other actors, such as external
systems. The five interfaces, as shown in Fig. 1, are described in table 1.

Figure 1: WfMC’s workflow standard interfaces

Interface Function
definition functionality enabling process designers to create a pro-

cess definition (for example using some graphics tool) and
then deploy it to the workflow management system

client applications the ability to invoke the system from the outside, in order
to request service from the workflow engine, to control
process and activity instances

invoked applications enables invoking various external applications that are not
the core part of the workflow system

interoperability supports interoperability with other workflow systems, for
example enabling to them to interchange data and work
items

monitoring functionality enabling monitoring and control over active
process instances, as well as administration of the work-
flow management system

Table 1: Workflow standard interfaces

One of the specifications developed by WfMC is the XPDL (XML Process Definition Language),

State of the art in the workflow management systems 9

which defines XML schema for declaring workflows. In 1996, the WfMC has created a glossary of
terms with relationships between the key workflow terms (see Fig. 2, [WfMC]). As Tom Baeyens,

Figure 2: WfMC’s workflow glossary of terms

lead architect of JBoss Inc. states in his article on workflows and BPM ([Baeyens]), today’s work-
flow management systems are far less mature than relational database systems. This probably results
from numerous different concepts for workflows developed individually. On the other hand, relational
database system is a common, well established concept, widely understood among the community.
This leads to the conclusion that in the near future, workflow management systems (further WFMS)
are likely to develop heavily and gain much interest. Despite those predictions, however, even today
WFMSs are intensely used in the field of enterprise application integration (EAI). Enterprise applica-
tion deployments can consist of several heterogeneous systems, where each of them is focused on one
clear purpose and is dedicated to support a single type of business processes (i.e. document processing,
customer relationships management, supply chain management or enterprise resource planning). Appli-
cation of a WFMS as an EAI platform in these scenarios would enable business processes to span over
multiple dedicated applications, possibly without altering or re-deploying any of them. Flexibility of a
WFMS lets designers define their own process definitions, instead of using ready-made and hard coded
processes that are supplied with dedicated applications out of the box. It is believed by some people,
that WFMS is the missing link in the enterprise application development. Those systems simplify appli-
cation maintainability by centralizing business logic that would otherwise be scattered among database
stored procedures, EJB components, and web applications, hence making systems developed this way
far less maintainable and more cumbersome. Another option to use a workflow management system is
to embed it into developed application. Used this way, the WFMS becomes another component of an
application and is concealed from the end users. This approach is usually applied by companies that pro-
duce dedicated software systems, customized for a particular customer (eg. for national institutions or
agencies). Among the most of the traditional process definition and modeling tools, as well as workflow

10 Notations and theoretical foundations of workflow management systems

management systems, four layers can be identified and distinguished. Commonly understood notion of
a process definition can be divided into those four pieces.

The state layer relates to expressing states and control flow, derived from standard programming
languages, and Von Neumann architectures. States, which are also called wait-states, denote a depen-
dency of a process upon the particular actor (such as human or computer system). WFMS then awaits
any signal from that actor, in order to go on with the process. Control flow on the other hand, speci-
fies execution paths of the process - including common constructs well known from the programming
world, like loop statements, condition statements, and the like. When the processes are being executed,
the need arises to keep track on the current state of the current process. This implied introduction of
token, which corresponds to the notion of a program counter in Von Neumann architectures, and helps
to visualize current process states and pass control flow to states that currently own a token.

The context layer involves data that is being attached to the process or particular activity during its
execution. Depending on WFMS, variables can be stored as primitive types, objects, custom types or
even references to external resources like filename in the filesystem or database record’s identifier. Usu-
ally, those references are turned into meaningful information when they are to be presented or transfered
to one of the heterogeneous systems that the WFMS links.

Another layer - the programming logic layer is the key part of the process’ or activity’s business
logic. In this layer it is defined, what actions are to be made in reaction to which events. Some cases
of programming logic may involve fetching data from a database, and other may involve performing an
XSLT transformation or sending emails.

The last one - user interface layer is a way to transform data that has been input by the user (for
example by using forms in a web application) into appropriate variables of a workflow process. Basing
on that information, WFMS may decide whether to start a new process instance or how to route existing
one.

1.3 Notations and theoretical foundations of workflow management systems

Workflow management systems have come a long way since 1980s. During their development, there
were many attempts to establish a unified and universal notation for modeling and visualizing processes.
One of the most widely used notation is the Petri net, whose enthusiasts maintain that it is the only
formalized notation, with well defined theoretical foundations. Other notations for workflow processes
include UML activity diagrams, Business Process Modeling Notation (BPMN) as a UML extension, and
Pert diagrams. A relatively new approach to workflows has been developed as a concept related to the
Stack Based Approach - it doesn’t follow the foundations of Petri nets, and hence focuses on flexibility
of process execution and enables dynamic changes.

Petri net

Petri net has been invented in 1962 by Carl Adam Petri in his PhD thesis. It is also known as P/T-
net (place/transition net), because of two types of nodes: places (states) and transitions (transitions
between the states). There are also directed arcs that connect places and transitions. Tokens in Petri
nets indicate in which state is currently the control flow. Petri nets have gained much interest and have
been applied in such areas as software design, data analysis, concurrent programming, and workflow
management. In the latter case, Petri nets are considered as a foundation having strong theoretical
background itself. However, the main drawback of applying Petri nets to workflow management is their
limitedness resulting from Von Neumann architecture roots - all the activities and processes are carried
out sequentially by default. What is more, this model decreases flexibility, as processes instantiated
once have to stick to their initial definition until the end of execution. Despite their limited nature, Petri

Notations and theoretical foundations of workflow management systems 11

Figure 3: Example of a Petri net

nets or their derivative models have been widely implemented in various workflow management systems
available on the market.

UML activity diagrams

Unified Modeling Language, or UML, is a standard language for modeling abstract schemes of informa-
tion systems. Being a general-purpose language, it covers almost every aspect of modeling in the field
of software engineering. UML has been defined officially by the Object Management Group (OMG), as
a result of synthesis between Jim Rumbaugh’s Object-modeling technique (OMT) and Grady Booch’s
method called, naturally enough, the Booch method. One of the most popular UML diagrams, used for
depicting behavior in information systems, are the activity diagrams. They are usually used to express
simple data flow or sequence of activities needed to carry out in order to achieve some goal. Sometimes,
activity diagrams are used to draw workflow processes, but those are rather simple cases, that do not
employ full-blown process management systems. For example, a general, high level view of a busi-
ness process, or sequence of screens in a web applications can be expressed by using the UML activity
diagram. Below is a simple activity diagram describing purchase process in a an online store.

BPMN as an UML extension

UML activity diagrams, as described above, are able to model some basic workflow process’ behavior,
but in case of more advanced and complicated constructs, process view depicted that way may fail to
convey many important information, and thus making it farther from reality. Business Process Modeling
Notation (BPMN) has been created to fill the gap between business processes’ visualization and their
actual behavior. It is a standardized graphical notation, developed by the Business Process Management
Initiative (now part of the Object Management Group). Invention of this notation has been aimed at
unifying process visualization - BPMN diagrams were designed to be understandable by system devel-
opers, as well as designers, architects, and even non-technical business users or analysts. It has been
based on UML activity diagrams, but besides of several common elements, BPMN notation is far richer
and focused on business processes. Elements that can be used to express processes can be divided into
four major groups, which in turn consist of several element types. Structure of BPMN elements is
presented in table 2.

Events are represented with circles, and denote that something has happened (1) before (start event),
(2) during (intermediate event), or (3) after (end event) execution of a process.

Units of work, or activities, that need to be carried out during the execution of a workflow process
are represented as rounded-corner rectangles. Activities can depict either indivisible, atomic tasks or
nested processes. In the latter case, rectangle also has a plus sign at the bottom.

12 Notations and theoretical foundations of workflow management systems

Figure 4: Sample activity diagram

Figure 5: Three kinds of BPMN events

Figure 6: BPMN activity

Notations and theoretical foundations of workflow management systems 13

Group Elements
flow objects events, activities, gateways
connecting objects sequence flow, message flow, association
swimlanes pool, lane
artifacts

Table 2: Structure of BPMN elements

Elements used for routing between activities are in BPMN called gateways. A basic gateway deter-
mines different decisions, whereas the fork/join gateway depicts forking and joining of process paths.
Third kind of gateway, the inclusive decision/merge gateway, is used to determine merging of routes.

Figure 7: BPMN gateways

The BPMN notation has also three types of connectors that can be used between activities or between
activity and gateway, etc. The sequence flow connector determines order of executing activities in the
process, and it is illustrated with a simple arrow directed from source towards the destination. A diagonal
slash across this line indicates default decision. Message flow connector specifies how asynchronous
communication is done during the execution of a process. It is represented with a dashed line with an
open arrowhead. Third connector, the association is used to associate data or artifact to a flow object,
and it is visualized as a dotted line with no arrowhead.

Figure 8: BPMN connections

Often there is a need to separate activities of a process that are executed on different systems or just

14 Notations and theoretical foundations of workflow management systems

to logically organize those activities into categories. Pool and lane, generally termed swimlanes, are
constructs that enable this categorization. They both look alike and can contain flow objects, connectors
and artifacts. However there is a slight semantic difference between them - lanes are sub-parts of the
pool, and thus one pool can contain many lanes.

Figure 9: BPMN swimlanes

To increase readability of BPMN diagrams and bring more information to them, artifacts have been
introduced. The three artifact types are: data object (visualizes data creation or flow along the process),
group (used simply to group activities in the process), and annotation (boxes with text containing
additional information about the diagram, that make it more understandable and self-explaining).

Figure 10: BPMN artifacts

PERT charts

The Program Evaluation and Review Technique is a model for project management that facilitates
decision-making and is based on events and activities. It has been invented in 1958 by the United
States Department of Defense. In PERT charts, emphasis is put mostly on time, not cost of the project.
This diagram displays connected events as circles with numbers inside. Each of that circle represents
a milestone. Events are connected with activities which, by convention, are drawn using arrows. Ac-
tivities of a PERT chart can’t be carried out as long as their nearest preceding activities haven’t been
finished. Sample PERT chart is presented below.

PERT diagrams are also used to visualize workflow processes. Sometimes they are even considered
as a better alternative to Petri nets, because of their inherent ability to structure processes hierarchi-

Business process management solutions available on the market 15

Figure 11: Sample PERT chart

cally and capability of infinite nesting of processes. These diagrams can also help in depicting more
parallel processing, which, unlike in Petri nets, is not strictly following the Von Neumann architecture
conventions.

The new approach to workflows

Apart from the standards proposed by OMG or WfMC, and various non-standard, vendor-dependent
workflow solutions, the new vision of process management has been developed. It has been designed
around the Stack-Based Approach to query languages and advocates more object-orientedness and par-
allelization in the field of workflows. A process, according to this approach, is a data structure with
specific attributes and a procedure containing business logic that can be invoked during execution. Pro-
cesses defined this way could contain any number of nested subprocesses, each of which would be
inherently parallel. Such definitions would be capable of dynamic changes, according to current needs,
and thus will not be limited to strict execution order defined at design time. This approach is much
closer to reality than, for example, Petri nets, where, as mentioned in previous sections, execution path
is firmly described and cannot be changed afterwards. PERT chart is considered a relevant visualization
tool for workflow processes in this approach. It defines only which activities have to complete before
another are started, but says nothing about the actual order of processing. Exact execution path is deter-
mined at runtime, using the pre- and postconditions contained in the process instances. Those conditions
can not only establish routing between activities, but they can also act as synchronization blocks, and
other constructs from the workflow field. Process management prototype developed within this thesis is
based mainly on this new approach to workflows, as the author believes it to be powerful, flexible, and
innovative solution to business process management.

1.4 Business process management solutions available on the market

Numerous workflow products are available nowadays. Some of them are open source systems, free to
use even in the commercial environment. Probably the most popular open source workflow platform is
jBPM from JBoss inc. While being a relatively new product on the market, it has gained much interest

16 Business process management solutions available on the market

in the community and is considered a stable and mature solution. Its current version supports two pro-
cess languages: jPDL (Java Process Definition Language) - XML-based language for defining business
processes, and BPEL (Business Process Execution Language) - language aimed to enable large-scale
programming, which means long-running processes with asynchronous communication and integration
via web services. jBPM, as its authors say, is a highly flexible and scalable process engine. It can run
inside a J2EE container or as a standalone application. What is more, many processes, possibly defined
in different languages, may execute simultaneously within the same workflow engine instance. It also
integrates well with existing products, such as Jboss Seam (a Java Server Faces framework implemen-
tation) for handling page flow in web applications. Jboss jBPM is attractive not only to open source
software enthusiasts, but it is also deployed in large-scale enterprise applications, replacing expensive
commercial workflow engines.

Another business process solution from the open source group is Codehaus’ Werkflow. This engine
is not very popular, probably because of immature state of the code, performance problems and lack of
serious customer support. Werkflow process model is based on Petri nets, and for defining processes it
uses the Jelly programming language (an apparently failed attempt to create a programming language
based entirely on XML). What is more, it lacks visual process editor, so all the process definitions must
be written directly in XML. All in all, workflow engine from Codehaus seems to be rather a proof of
concept than real solution that would be capable of solving real-world problems.

OSWorkflow from Open Symphony is yet another XML-based business process management sys-
tem written in Java. While creators of this engine advocate writing process definitions directly to XML
files or developing a custom GUI designer in-house, the latest version of OSWorkflow includes graphi-
cal process designer. The XML language used to define workflows does not conform to any of existing
standards. Unlike the previously discussed solution, this one supports variety of external calls from
within processes, like simple Java classes, classes retrieved via JNDI, and even remote EJBs or SOAP
invocations. OSWorkflow is a low-level workflow solution, and its authors clearly emphasize it. Process
definitions written in XML cannot be changed by everyone, i.e. business analysts, and are not intended
to. Authors maintain that only the programmers are capable of making any changes to workflows.

Regardless of wide utilization of open-source workflow management software, most of the plat-
forms applied today are quite expensive, enterprise workflow management engines produced by large
companies. Those systems usually conform to existing standards (like BPEL, BPMN, etc.), and offer
much more than simple workflow management engines. Integration with web services, ability to serve
as a backbone for Enterprise Application Integration (EAI) solutions, and sophisticated GUI designer
tool is a must for advanced commercial workflow systems deployed nowadays. Example of a full-blown
workflow suite is IBM’s Websphere MQ Workflow. For defining processes, it uses the FDL Work-
flow Definition Language which, as a notation is clear, comprehensible, and similar to BPMN. Another
product from another big vendor is BEA’s Weblogic Integration. Different vendor means different
proprietary notation - this time it is Java Workflow Language (JWF). The JWF files are just plain Java
classes with annotations describing routing logic, and also some detailed business logic that is refer-
enced via XQuery or Java methods. The Oracle Application Server integration platform from Oracle
is a set of products to build applications and integrate business processes across various, possibly het-
erogeneous, systems. One of the components of this suite is Oracle Workflow, a workflow engine.
For defining processes, it uses its own proprietary standard - WFT files. Logical structure of business
processes written according to this standard resembles Petri nets. Oracle Workflow can be embedded
in user applications, providing support for task lists and routing in accordance with application events.
This workflow management system also enables processes to perform external method calls - PLSQL
database stored procedures or methods stored in Java classes.

2 Augmenting the Stack-Based Approach with workflow capabilities

Stack-Based Approach is a methodology for object-oriented query/programming languages. SBA en-
courages adapting techniques known from the programming languages to the world of database query
languages. Therefore, this approach blurs the boundaries between those two sorts of languages, uni-
formly covering all their aspects. The Stack-Based Query Language (SBQL) adheres to this new ap-
proach. It has been designed from the practical, not theoretical point of view, hence it delivers more
power to the users. Elements present in other programming or query languages, like syntactic sugar or
mismatch between human and machine semantics, have been reduced in SBQL, resulting in relatively
concise, clear and comprehensible syntax.

2.1 Stack Based Approach and Stack Based Query Language extensions

SBA and SBQL are highly extensible, so many projects, especially in an academic field, involve nu-
merous extensions. These include updatable object views, dynamic object roles, optimizations, and so
forth. However, so far it hasn’t been extended with structures or keywords that would enable business
process definition, storage, and manipulation. Therefore, this problem has been undertaken within this
work. The introduced object store and language elements constitute a consistent and thorough solution
to numerous problems related to workflows. Example process described below will be used to show
some of those issues and their resolution based on this new approach to business process management.

Figure 12: Insurance claims handling process

This process reflects insurance claims handling in an insurance company. For simplicity, we will
narrow this company’s activity to handling claims resulting from traffic accidents. Employees of this
company register all incoming claims. After the registration is completed, a clerk analyzes particular
cases and classifies them as simple or complex. Further process path depends on the claim type. Thus,
for simple claims, insurance should be checked and an employee should phone garage. Those activities
are independent and could be carried out in parallel. For complex claims, a clerk should check insurance,
check car’s damage history, and then phone garage. Activities of the latter claim type, depend on each
other and should be attained sequentially. After executing activities in both of these scenarios, a decision
is made. In accordance to this decision, money will be payed or not. Regardless of the outcome, the

18 Stack Based Approach and Stack Based Query Language extensions

insurance company has to send a letter to the claim originator. This is a simple example, yet enables
demonstration of some vital features of this workflow SBA/SBQL extension.

Probably the most crucial and recurring problem of workflows is lack of inherent parallel execution
of processes. This new approach assumes every process to be an object that is capable of independent
and parallel execution. High level synchronization mechanisms have been introduced, in order to enable
specifying enactment order when such need arises. By default, the only determinant that influences
process flow is the availability of resources. This flexible mechanism enables building a wide variety
of routing rules, based on process context, data, events, or errors. In the example process shown above,
most of activities need to be carried out sequentially, in specific order. However, there is still some
room for parallelization - the last two activities do not have to be executed one after another. The "Pay"
activity should look up data related to decision that has been made earlier (within the "Decision" task),
and according to its value - execute or not. At the same time, an appropriate letter should be sent to
the claim originator - there is no need to wait until the "Pay" task is finished, because the decision has
already been made. Both the "Pay" and "Send Letter" activities should have defined preconditions, in
accordance to which, further process path would be determined.

Another important matter, dynamic process changes during execution, is also troublesome to many
workflow engines and lacks decent solution among today’s business process management platforms.
What if the company’s policy changes and some new path for processing requests arises? According
to the process definition established at design time, it is not possible to reflect such changes. However,
due to this new approach to workflows, it is possible to alter process definition from within procedural
section of any activity. This concept highly increases flexibility, as processes are capable of adapting to
rapidly changing situations and therefore reflecting reality with bigger degree of fidelity.

Error and exception handling is another vital issue when it comes to process management systems.
During process execution, just like in real life, something can always go wrong. By exceptional situ-
ation we mean anything from some low-level exceptions thrown from within executing code, or errors
defined on the higher level of abstraction and meaningful from the business point of view. All of these
situations should be handled appropriately, which would increase the chance of recovery after serious
or minor failures. Workflow extensions for SBA and SBQL developed within this work introduce the
compensation mechanism. Every activity during process execution can go wrong and that is when the
compensation procedures may turn out to be very helpful in leaving system state intact. Let us consider
the example process described above. During the "Decision" activity, an erroneous decision could be
made, for example, not to pay money. This error could be detected just after the letter had been sent to
the claim originator. Relevant compensation procedure for this scenario would include paying money
to that customer, and sending another letter. Its contents would include statement about cancellation of
the previous one.

Key part in business process handling is resource management. This problem arises to even higher
rank, when process parallelization hinges only upon resources availability. In the insurance claim han-
dling process, we would like to assign decision task to the higher employee, with more experience and
special skills. Through this SBQL extension, we are able to specify which group of users should per-
form specific tasks (assignment by roles) and additionally, we can define some special conditions for
capabilities of potential performers that have to be satisfied. In our example, we can say that the "De-
cide" task can only be carried out by users of group "managers", additionally having at least 10 years of
experience in the field of insurance law. This flexible performer specification leverages SBQL queries as
a natural way of fetching data in this environment. Resource management is not only limited to human
resources, but utilizes also many others, just like in real life activities. They are also allocated using
SBQL queries and procedures, which are executed at run time.

Subsequent sections of this chapter describe proposed elements that should be added to object store,
as well as the SBQL language, in order to support handling of business processes.

SBA object store extension for storage of workflow processes 19

2.2 SBA object store extension for storage of workflow processes

The proposed SBA object store extension consists of seven new types that are the foundation for this
workflow extension: activity definition, activity instance, process definition, process instance, at-
tribute, resource, and resource definition. Every object has its internal, not readable identifier, and
some of them (activity definition, activity instance, process definition, and process instance) also have
special flag indicating that particular object is of specific type. Each of them, together with properties or
associated objects will be described below, together with a brief description of usage and applicability in
the already introduced example business process. More detailed, technical description of those elements
can be found in Appendix A.

Activity definition

Activity definition is the main building block for workflow processes. According to those objects, ac-
tivities are instantiated and can constitute a process definition. Designers or developers using activity
definitions have to specify what actual work needs to be done, who will perform activities of this in-
stances and what kind and amount of resources will that execution consume.

name - a unique, externally readable and meaningful name of the activity definition. This property
can contain business identifiers, as well as names by which the activity definitions could be identified or
distinguished by the software developers. In our sample process, names of the activity definitions will
be "ClassifyDefinition", "DecideDefinition" or "PhoneGarageDefinition".

description - description of the activity definition. Can contain detailed information about what par-
ticular activity definition is for and what it should do. For example: "Decide if the claim will be admitted
and money will be paid".

work - procedural part of the activity definition that specifies what should be done within all instances
of this activity. This SBQL procedure will be executed in case of an automatic activity, after pre-
conditions have been checked and before nested activities of this activity are launched. This element
constitutes an atomic work unit, but it can consist of many procedure calls nested hierarchically. This
element could be used to, for example, perform some business logic, call external systems or make
operations on the data bound to the activity or process. "Check Insurance" activity from our example
process could, for example, query special database containing policies and according to the outcome,
set relevant attribute of this activity instance.

performer - performer who will perform activities instantiated using this activity definition - may be
specified in numerous ways, eg. depending on role, qualifications or other properties; this attribute is
used as a definition for eligible performers - actual resource that will be assigned to perform particular
task will be determined dynamically at runtime, using this query. Example queries that can be used to
determine performers in the "Decide" activity, within insurance claim handling process: employee
where "Manager" in roles.roleName. For automatically executed activities, like already
mentioned "Check Insurance", performer query would come down to AUTO, so that the process man-
agement engine will know that this is an automatic activity.

attributes - collection of attributes that hold data specific to particular activity, and can be accessed
from within other activities of the process. One attribute can be either a single object or a collection of

20 SBA object store extension for storage of workflow processes

objects. The "Check Insurance" activity definition can for example hold a collection of policies found
in the database, that could be used by the subsequent activities.

resources - specification of resources that this particular activity will require in order to be success-
fully carried out. This definition consists of a resource identifier and needed quantity. Demands like
"20 computers" or "5 trucks" can be expressed within this element. "Send Letter" activity may, for ex-
ample, require a computer workstation with printing device attached to it, together with some paper for
printing.

In Fig. 13, a definition of "Phone Garage" activity is illustrated as it would be stored in SBA data
store.

Figure 13: Example activity definition

Activity instance

When an activity definition gets instantiated, an activity instance comes to life. Those objects contain
most of the process routing logic, enclosed within pre- and postconditions. Activity instances can also
have references to other processes, nested inside. Other important aspects of those elements include
references to following activities, i.e. activities that can be executed (but do not have to - depending on
their preconditions) after the current one completes. Activity instances also refer to their immediately
preceding activities, which can serve for checking their statuses or attached attributes.

name - name of the activity, meaningful and externally readable. Example names for an activity
instance can be "Check Insurance", or "Register Claim".

SBA object store extension for storage of workflow processes 21

description - description of the activity instance. Just like description field of the activity definition,
it can contain detailed information about what should be done within this activity or what is its purpose.
Unlike description of an activity definition, which spans all instances of particular activity, this field
should contain instance-specific details.

definition - by containing this reference, we denote which activity definition should be instantiated.
One definition can have many instances, and one particular instance may have exactly one definition.
Activity instance named "CheckInsurance" can for example refer to "CheckInsuranceDefinition", as its
definition.

preconditions - this query will be helpful in evaluating preconditions of the activity, i.e. conditions
that must be satisfied in order to proceed with execution of this activity instance. This element can be
just any SBQL query that returns a boolean value. Preconditions play the key role in determining routing
between activities, and they can also act as high-level synchronization blocks. There can be many con-
ditions connected with logical operators; there is also an option of signaling the workflow management
system to wait until particular conditions are satisfied (eg. invoice from other company is received).
Example preconditions specification can be as simple as true (activity will always be executed), or
more complex. Let’s consider our sample process. We want to express that "Pay" activity could only
happen if the earlier made decision was positive. Thus, preconditions section of "Pay" activity should
read: (this.precedingActivities where name = "Decide").paymentDecision,
where paymentDecision would be an activity attribute that has been set to true or false during that
activity’s execution.

postconditions - this section is similar to the above described preconditions. The only difference
is that the postconditions are evaluated after the activity instance has finished execution. Again, let’s
consider the "Decide" activity. By specifying postconditions, we want to express what is enough for
particular activity to complete. In this situation, "Decide" activity would be finished if, naturally, pay-
ment decision had been made. For denoting this, we use already mentioned paymentDecision
attribute and set its value to true or false, so that another activities could check it. Therefore, our post-
conditions section of the "Decide" activity would read: this.paymentDecision = true or
this.paymentDecision = false. Null value in this place would mean lack of any decision,
and this state we want to prevent.

processes - nested subprocesses that are to be executed within this activity instance. Processes can
be infinitely nested (of course without considering resources, which are always finite), and every sec-
tion with nested processes can contain any number of sibling subprocesses (processes that are on the
same level of nesting). This approach supports hierarchical alignment of workflows and fosters reuse -
already defined processes can be easily plugged into existing activities. In the claims handling process,
good candidate for nested subprocess would be that related to executing payment, within "Pay" activ-
ity. Activities of that subprocess could involve invoking external banking system and making money
transfer.

followingActivities - collection of activity instances that will have their preconditions evaluated, and
(in case of positive result) will be executed in parallel by default, if only available resources suffice.
This section can contain only references to activity instances, all the routing constructs and logic can
be modeled by using pre- and postconditions (described earlier) and including them in each element

22 SBA object store extension for storage of workflow processes

of the following activities’ collection. For example, "Classify" activity instance will have three el-
ements in the followingActivities collection: "PhoneGarage", "CheckInsuranceSimple", and
"CheckInsuranceComplex". This does not mean that each of those three activities will be executed, but
preconditions of all three will be evaluated, and relevant process route will be selected depending on the
outcome.

precedingActivities - collection of references to activities that have already been completed before
the current activity started execution. This element can be useful when an activity depends on previous
activities’ statuses or there is a need to access data contained in preceding activities. Example reference
to previous activities’ attributes has been shown in preconditions’ description paragraph, where we
wanted to access the paymentDecision attribute from within "Pay" activity instance.

performer - reference to the instance of Performer class, which represents resource already allo-
cated as a result of performer query evaluation, specified in current activity’s definition. "Decide"
activity of our example business process would have concrete object of class Performer allocated,
containing data about specific manager that is responsible for making this decision.

resources - collection of resource objects that are both required and allocated by the current activity
instance. Allocated resources cannot be reallocated by another activity instance, unless they are deal-
located first. This can happen upon activity completion or failure. Let us say, that the "Send Letter"
activity from our sample process will consume one computer workstation with a printer. In this case,
the resources section will include a computer with quantity 1, and a printer with the same quantity. After
the activity has been completed, both of those resources will return to the pool of available resources,
ready for another allocation.

attributes - data objects that are attached to current activity instance (activity-scoped variables). At-
tributes can be accessed from within this or any other activity instance, or any process that is being
executed within the same workflow management system instance. Processes may have different routing
paths, whose selection is determined according to this data (data-based routing). Also, pre- or post-
conditions may depend on particular attribute’s presence or value. Attributes support wide spectrum of
values: from primitives, like strings, numbers, to more complex ones - whole documents, multimedia
files, or aggregated data objects. As an example, we can imagine that activity named "Register Claim"
would have a digitalized claim document attached to it as an attribute. Then, all the subsequent activities
could access this document in order to retrieve needed information.

startDate - date and time when current activity instance began execution.

finishDate - date and time when current activity instance ended execution.

status - status of the activity instance. Can contain simple constants ("WAITING", "FINISHED", etc.)
or can be dynamically evaluated at run time, as a result of more complex SBQL queries. The "Check
Insurance" activity of our example process will have its status evaluated according to the presence of
attributes that could potentially contain insurance policies data, so that the following activities could
easily check that attribute and determine further processing.

SBA object store extension for storage of workflow processes 23

instances - query that should return number of instances of this activity to execute. Example queries
for this section can be 3, 2+2*5, or count(customers where city = "Warsaw"), hence
any valid SBQL query that returns an integer. This can be useful when we want to carry out a particular
task, but for different cases - our example "Send Letter" activity could be executed three times, if there
were three different originators of the same insurance claim.

errors - collection of errors that have been reported during execution of this activity instance. After the
process finishes, those errors are checked against specified exception handlers in order to run relevant
compensation procedures. Concerning the example process, far-reaching consequences could result
from an error during "Pay" activity, so all such situations need to be considered and relevant actions
should be taken.

An example of activity instance is shown in Fig. 14. It illustrates how "Phone Garage" task could be
stored in SBA data store. Note that in this diagram, not all elements of activity instance have been used.
That is because some of them are not applicable for this particular task (i.e. work element, as it is not
an automatic activity), or have not been used (i.e. subprocesses or errors).

Figure 14: Example activity instance

Process definition

These objects contain activities that need to be carried out within all instances of the current process
definition, together with compensation procedure triggered in exceptional situations, depending on the
errors that occurred in each of this process’ activities.

activities - set of activities that make up this process. By default, all activities specified within this
section are to be executed in parallel. If this is not a desirable behavior, more sophisticated routing
rules can be defined using each activity’s preconditions. Each element of this collection can have
followingActivities section, specifying which activities need to be attained afterwards.

24 SBA object store extension for storage of workflow processes

attributes - all possible data objects that can be attached to instances of this process, should be defined
here. Values of attributes specific to process instances should not be kept here, although the default
values can be. A process-scoped attribute can be, in case of the insurance claims handling process,
personal details of the claim originator. Therefore, any activity within this process could directly access
this information.

resourceAllocation - one of several methods for allocating resources, according to which the sys-
tem’s resources management module would allocate tasks. Value of this element can be, for example,
"load_balance", "random", or "round_robin".

compensation - business logic related to handling errors that occurred during execution of a process.
Compensation procedure can be simple, for example only report the errors and send email to appropri-
ate people, or more complex - invoke external systems to roll back changes made within this process
instance. Failure of an insurance claim to register, for example due to lack of important information on
the claim form, should immediately be reported back to the originator. Process created to handle this
specific claim should then be canceled. This would leave the system in the consistent state, and would
prevent further errors during execution of this process instance.

Process definition object of the insurance claims handling process could be written and stored in the
data store, as it is depicted in Fig. 15.

Figure 15: Example process definition

Process

Instance of the process is one of the simplest objects in this extension. It doesn’t contain any business or
routing logic itself, because all of it has already been defined in process definition and activity instance

SBA object store extension for storage of workflow processes 25

objects.

name - externally readable and meaningful name of the process instance.

definition - reference to the definition of this process. One process instance can have exactly one
definition, and one definition can be instantiated repeatedly. For example, the claim handling procedure,
defined once, can be instantiated for each incoming insurance claim.

startDate - date and time when the process instance has begun execution.

endDate - date and time when the process instance has ended execution.

attributes - collection of process-scoped attributes, that comprise data objects related to process.
These objects can be accessed from within any activity enclosed by this process instance, along with
other process instances.

Structure of a sample process instance written to SBA data store, is illustrated in Fig. 16.

Figure 16: Example process instance

Attribute

Processes or activities in this SBA/SBQL extension may contain attributes. Those are data objects
according to which routing paths may be chosen, but they can also serve as simple containers for data
manipulated by subsequent activities or nested subprocesses.

26 SBQL extensions for defining business processes

type - this field denotes type of the attribute. It can be a primitive type, or a class name. Values of the
attribute will be constrained by this field, i.e. the value field will permit only legal values according to
the type. Example types include integer, string, ClaimOriginator or InsuranceClaim.

name - name of the attribute that will be used to manipulate its data. This field is externally readable
and meaningful. Typical attribute names would include initialDocument, or insuranceCase.

comment - additional comment that would inform the reader about the nature of this attribute. May
be much longer than attribute’s name, but lengthy descriptions are discouraged in this place.

value - value of the attribute. Any object that conforms to the type field. Can be retrieved or set
from within activities or processes.

Resource definition

These elements can be created and stored in order to keep information about availability of specific
resources. Fig. 17 shows an example structure of phone resource availability definition that is used in
the insurance claims handling process.

name - readable and meaningful name of the resource that is being defined. Example resource names:
"truck", "computer", or "printer".

availableQuantity - quantity of specific resource that is currently available for allocation. By spec-
ifying this value we mean the global amount of resources that is available for use immediately during
activity execution.

Resource

Objects of this type will specify how much of particular resource is needed to carry out an activity. Re-
source objects can be kept inside the activity instances, denoting amount and kind of resources allocated
to the current task.

definition - reference to the definition of resource, where more contents pertaining availability, quan-
tity, descriptions and other details are kept.

quantity - amount of items that represent this resource. This field is usually specified to denote the
demand for particular resource. When a resource gets allocated to activity, value of this element is
subtracted from the available resource’s quantity, and it is added again after deallocation.

2.3 SBQL extensions for defining business processes

Supplementary to the SBA data store enhancements is the Stack Based Query Language extension,
which proposes adding several new keywords for creating and manipulating business processes. It
consists of special operations that will be performed on process definitions, process instances, activity
definitions, and activity instances. Syntactic rules of the proposed extensions together with their seman-
tics will be explained in subsequent sections, using example that has already been introduced in previous
section.

SBQL extensions for defining business processes 27

Figure 17: Example resource definition

Creating process definition

Designing processes, or creating their definitions is probably the most crucial part in the overall process
of workflow-based information system design. Once the definitions are created, numerous process
instances can be created according to them at runtime. SBQL extension proposed within this work
assumes existence of two major elements needed to compose such definition: activities that will
contain all the tasks enclosed by this process, and attributes for defining data containers that will
hold process scoped variables.

Declarative exception handling mechanism also uses the create process definition state-
ment for defining erroneous situations management rules, which can be specified with the compensation
keyword. This procedural section of a process definition can be used to invoke simple actions, like re-
verting changes made to persistent store, or some more complex and human-involving operation, like
sending second letter, after the first one turned out to contain erroneous or irrelevant information.

Example code below creates process definition for handling insurance claims.

create process definition {
name "Handle Insurance Claim";
allocation "RANDOM";
activities {

bag { registerClaim }
}
attributes {

case_number : string;
reg_number : string;
vin_number : string;
claim : &Document;

}
} as handle_claims_def;

The above code will create a process definition with name "Handle Insurance Claim", one initial
activity - registerClaim, and four attribute definitions for holding case-specific information, like
claim number, vehicle registration number, VIN, and original claim document in digitalized form. All
the instances of this process will have their activities randomly distributed among eligible perform-
ers, as it has been specified by the allocation keyword. From now on, developers will be able
to instantiate and run processes according to this definition. It is important to note that prior to cre-
ating process definition all its activities need to be created. Another important fact is that although
very useful, compensation keyword has been omitted in this example in favor of code clarity and
comprehensibility.

28 SBQL extensions for defining business processes

Creating process instance

Once the definition has been created, one can now instantiate it. Each process instance is a single case,
handled individually. Provided that we have executed the above code, we can create its single instance
by executing the following SBQL command:

create process {
name "Handle Insurance Claim no. 244";
definition handle_claims_def;

} as handle_claim_244;

It will create a new instance in accordance to definition specified in the previous section. All that
is required to achieve this, is providing an appropriate reference to the already existing definition, in
this case handle_claims_def. Process instance named "Handle Insurance Claim no. 244" is now
ready to be started and executed.

Creating activity definition

Activity definition is used analogously to the process definition - it specifies common elements to all
activities representing this type, and according to it, new task instances will be created. Activity defi-
nition is slightly more complex than two previously discussed elements. Therefore, creating it is a bit
more complicated, yet sill remains comprehensible and fairly easy to use. In order to create an activity
definition, several elements must be specified.

Probably the most important part of any task definition, or even any process running within the
control of workflow management engine, is the procedural section, which is defined by the work clause.
Inside it, programmers should write SBQL code containing business logic, which could be some heavy
data processing, calculations, or simply delegation to other procedures or external systems. However,
this code should not contain any logic related to process routing, which is specified in other elements that
will be described later in this chapter. The code enclosed within the work clause will be executed by the
workflow engine upon task enactment. In the example claims handling process, the "Check Insurance"
activity could contain procedure that searches through the insurance database and, if any insurance is
found, puts result into appropriate activity-scoped attribute, making them available for later retrieval.

Another important statement, denoted by the performer keyword, is used to dynamically select
performer of activities sharing this common definition. Leveraging SBQL query also in this section
results in greatly increased flexibility, as the performer query can be virtually anything that evaluates to
existing resource, or, in case of tasks carried out automatically, a special string - AUTO. In the sample
process, "Check Insurance" task could be executed automatically, hence its performer section would
only contain AUTO, whereas the "Phone Garage" activity would involve human action to be taken,
so its performer section would contain the following query: Employee where "Clerk" in
roles.roleName.

As it was stated earlier, the proposed extension also includes infinite nesting of processes. Activ-
ity definition has been chosen as the integration point between parent and child processes. In order
to define such relation, one has to use the subprocesses section inside the create activity
definition statement, and supply a collection of references to existing process instances. Those
subprocesses can also be supplied in the form of an SBQL query that will be evaluated at runtime. Such
degree of freedom and generality helps in achieving true dynamically changing process definitions, and
enables designers to defer some decisions until runtime, which also boosts flexibility. The Insurance
Claims Handling example, being a relatively simple process, does not leverage the subprocess nesting

SBQL extensions for defining business processes 29

feature. However, most of the tasks that it consists of, can be decomposed, thus comprising many fine-
grained processes. A good candidate for such decomposition could be the "Pay" activity, consisting of
several small subtasks, like "Fetch Client’s Account Number", "Transfer Funds", and "Log Transaction
Event".

Vital to proper workflow handling is appropriate resource management. Inside every activity def-
inition, programmers may indicate demand for non-human resources by writing relevant SBQL query
inside the resources section. Each instance, right before execution, will be given those required
resources, as long as they suffice. Upon completion of such resource-involving task, allocated objects
will be deallocated by the resource management module, and sent back to global resource pool. "Send
Letter" activity, for example, requires a computer with printer and one envelope.

Example activity definition below illustrates usage of elements discussed in this section. This code
creates definition of "Phone Garage" activity, of the insurance claims handling process.

create activity definition {
name "Phone Garage";
description "Phone the garage in order to obtain necessary "+

"information about condition of the vehicle";
performer {

Employee where "Clerk" in roles.roleName;
}
attributes {

vehicleCondition : string;
}
resources {

Resource where category = "Phones";
}

} as phone_garage_def;

What has been created above, is the activity definition with performer chosen by role, and one
attribute of string type. All instances of this definition will try to allocate one item of category "Phones"
as resources necessary to carry out the task. Noteworthy is the fact that in the above code, sections
like work and subprocesses have been left out. That is because they were not required for this
particular definition - task is not meant to be automatically executed, so work section is useless. There
are also no subprocesses expected in activities representing this definition, hence no subprocesses
section.

Creating activity instance

Creating an activity instance according to its definition will provide a task that is ready to be placed in
processes and executed by the workflow management engine. In addition to referencing the definition,
activity instance also includes elements required to properly handle process routing, like discussed ear-
lier pre- and postconditions, together with specification of activities that ran before this particular task
and which should be enacted after it completes.

The preconditions and postconditions sections are evaluated before the core task func-
tionality is run, and can be used as high-level synchronization mechanisms. Both of those sections
require programmers to write SBQL queries that return either true or false. In the latter case, when
preconditions are evaluated, such activity will not be performed. However, programmers may specify,
by using waitfor clause, that the workflow management engine should wait for the preconditions to

30 SBQL extensions for defining business processes

be satisfied. Similarly, process management system may also wait for the postconditions to be met. This
can be useful when further processing is dependent on presence of specific data or its value.

Activity instances may point to other activities to denote that they need to be carried afterwards.
To achieve this, designer or programmer should provide collections of references to tasks inside the
following_activities clause. It can consist of either several, one, or no elements at all. The
latter case is used to indicate implicit end of the process, as no further activities are eligible for execution.

Process routing often depends on previous activities’ statuses or attributes, hence there has been
identified need for specifying immediately preceding tasks’ identifiers in preceding_activities
section. The only difference between preceding_activities and following_activities
sections is that the former requires specification of activity identifiers only, whereas the latter needs
references to regular activity objects. This has been introduced to avoid cyclic references between task
instances.

Let us now consider an example activity instance specification, based on the Insurance Claims Han-
dling process.

create activity {
name "Classify Claim";
description "Classify claim as either simple or complex";
definition classify_def;
preconditions {

waitfor {
"COMPLETE" in (Activity where name = "Register Claim").status;

}
}
postconditions {

waitfor {
(attribute where name = "complexity").value <> null;

}
}
preceding_activities {

bag { register_claim }
}
following_activities {

bag { phone_garage, check_insurance }
}

} as classify_claim;

This code has created a new instance of the "Classify Claim" activity, according to definition passed
in the definition clause. The task will execute only if the previous activity has completed, i.e.
when its status is equal to COMPLETE. Then, procedural part will be invoked and at the end, postcondi-
tions will be evaluated - in this case, the workflow management system will check whether the attribute
named complexity has been set. This create activity declaration also specifies that immedi-
ately preceding activity was register_claim, and next to the "Classify Claim" task execution, two
activities should get their preconditions evaluated, and, conditionally, carried out.

Manipulating processes

Once the process has been composed, with all its activities defined and instantiated, it not needs to
be started. Therefore, the proposed SBQL extension introduces the launch keyword which informs
the workflow management engine that particular process instance needs to be started. For the example

SBQL extensions for defining business processes 31

Claims Handling Process, launch procedure would look like this:

launch handle_claim01;

The handle_claim01 passed as a parameter is a reference to an existing, but not already started
or completed, process instance. Upon reception of process launch instruction, the workflow manage-
ment system will take actions to run procedural parts of activities, select execution paths, evaluate con-
ditions, allocate resources and handle exceptional situations. Sequence and structure of those actions is
illustrated in the activity diagram shown in Fig. 18.

Running process instances sometimes need to be canceled, for example to avoid or resolve dead-
locks, or when something goes wrong and there is no sense in further execution. This can be achieved
by issuing the following command:

cancel handle_claim01;

Now, process management system will stop performing handle_claim01 instance and deallo-
cate all resources that it consumed.

Both the launch and cancel reserved words are allowed to be used within activities’ procedural
sections, hence making process execution even more flexible and powerful.

Workflow processes that are kept within the data store, as well as all other entities related to them,
like activities, resources, etc., can be queried externally during the entire process lifecycle, i.e. even
after process completes or before it starts its execution. Those additional manipulation procedures are
seamlessly integrated with existing SBQL queries or constructs, making them easy to learn and use by
the developers. Access to this functionality can be helpful in managing running processes, resolving
problems, like deadlocks, or analyzing possible resource shortages.

Not only administrators can leverage querying or manipulating functions. Application developers
who use this workflow system as an underlying process engine would, for example, want to fetch all
tasks assigned to given user (to render his personal work list in the user interface), get all process
instances that are currently being carried out by particular group of performers, or use it as an interface
to add/remove resources.

In order to fetch all activity instances that are currently waiting for user actions, one has to issue the
following command:

Activity where status = "NOTIFIED";

On the other hand, when one wants to display the full list of processes sharing the same process
definition, no matter whether they are currently being executed, finished or not even started, below
query could be helpful:

Process where "Insurance Claims Handling" in definition.name;

32 SBQL extensions for defining business processes

Figure 18: Process Execution

SBQL extensions for defining business processes 33

Although those two examples can be useful, real life queries or process manipulation instructions
can get much more complex. For example, the below query can be help analyze which activities con-
sume significant amounts of resources.

Activity where forany (resources.resource)
quantity > definition.availableQuantity / 2;

Another example includes modifying the existing, and possibly running process. During an ongoing
credit process at the bank, the management board could pass a bill saying that all credit applications need
the supervisor’s acceptance and, additionally, require sending a letter to the applicant. Traditionally, the
procedure could begin for all new credit processes, started after the bill has been enacted. But there is a
better possibility - the process designers can change the currently executing instances so that they reflect
the legal status. The SBQL query shown below can be used to illustrate this action.

(Activity where name = "Accept Credit").followingActivities :=
bag { supervisor_acceptance, send_approval_letter };

As it can be observed from the examples above, the SBA entities introduced within this work can
be handled exactly the same way, as all other objects present in the store. However, attention has to be
paid to the fact that words like Activity, Process, and so forth, are reserved, and thus cannot be
used as identifiers, or against their syntax. The complete list of reserved words that has been introduced
to SBQL within this thesis, is placed in Appendix A.

The complete process

The example Insurance Claims Handling process that has been introduced in the beginning of this sec-
tion, can be defined and instantiated by invoking the SBQL code presented below. Result of this code’s
execution, as it would be kept in the data store, has been placed in the Appendix A, in the form of
Stack-Based Approach notation.

create activity definition {
name "Register Claim";
performer {

Employee where "Clerk" in roles.roleName;
}

} as registerClaimDef;

create activity definition {
name "Classify";
performer {

Employee where "Manager" in roles.roleName;
}

} as classifyClaimDef;

create activity definition {
name "Phone Garage";

34 SBQL extensions for defining business processes

performer {
Employee where "Clerk" in roles.roleName;

}
resources {

Resource where category = "Phones";
}

} as phoneGarageDef;

create activity definition {
name "Check Insurance";
performer {

"AUTO";
}
work {

// SBQL code
}
attributes {

policiesFound : &Policy[0..*];
}

} as checkInsuranceDef;

create activity definition {
name "Check History";
performer {

"AUTO";
}
work {

// SBQL code
}
attributes {

vehicleHistory : string;
}

} as checkHistoryDef;

create activity definition {
name "Decide";
performer {

Employee where "Manager" in roles.roleName;
}

} as decideDef;

create activity definition {
name "Pay";
performer {

Employee where "Clerk" in roles.roleName;
}

} as payDef;

create activity definition {
name "Send Letter";
performer {

Employee where "Secretary" in roles.roleName;
}
resources {

Resource where category = "Paper";
Resource where category = "Pen";

}
} as sendLetterDef;

SBQL extensions for defining business processes 35

create activity {
name "Register Claim";
definition registerClaimDef;
following_activities { bag { classifyClaim } }

} as registerClaim;

create activity {
name "Classify Claim";
definition classifyClaimDef;
preconditions { registerClaim.status = "COMPLETED" }
preceding_activities { bag { registerClaim } }
following_activities { bag { phoneGarage, checkInsurance }

} as classifyClaim;

create activity {
name "Phone Garage";
definition phoneGarageDef;
preconditions { classifyClaim.status = "COMPLETED" }
preceding_activities { bag { checkHistory, classifyClaim } }
following_activities { bag { decide } }

} as phoneGarage;

create activity {
name "Check Insurance";
definition checkInsuranceDef;
preconditions { classifyClaim.status = "COMPLETED" }
preceding_activities { bag { classifyClaim } }
following_activities { bag { checkHistory, decide } }

} as checkInsurance;

create activity {
name "Check History";
definition checkHistoryDef;
preconditions { checkInsurance.status = "COMPLETED"

and classification.value = "COMPLEX" }
preceding_activities { bag { checkInsurance } }
following_activities { bag { phoneGarage } }

} as checkHistory;

create activity {
name "Decide";
definition decideDef;
preconditions { phoneGarage.status = "COMPLETED"

and checkInsurance.status = "COMPLETED" }
preceding_activities { bag { phoneGarage, checkInsurance } }
following_activities { bag { pay, sendLetter } }

} as decide;

create activity {
name "Pay";
definition payDef;
preconditions { decide.status = "COMPLETED"

and decision.value = "PAY" }
preceding_activities { bag { decide } }

} as pay;

create activity {
name "Send Letter";
definition sendLetterDef;

36 SBQL extensions for defining business processes

preconditions { decide.status = "COMPLETED" }
preceding_activities { bag { decide} }

} as sendLetter;

create process definition {
name "Insurance Claims Handling";
allocation "RANDOM";
activities {

bag { registerClaim }
}
attributes {
classification : string;
decision : boolean;
}

} as handleClaimDef;

create process {
name "Handle Insurance Claim no. 244";
definition handleClaimDef;

} as handleClaim244;

3 Supported structures and workflow patterns

There has been a lot of research in the field of workflows. Despite standardization efforts, there are
also numerous vendor-dependent or academically developed management systems and notations. From
this differentiation emerged the need to describe common elements of most workflow notations and
solutions. The notion of workflow pattern, derived from design pattern as we know it from object-
oriented design, has been introduced in the work [Aalst et al.]. As the name suggests, workflow pattern
is a common solution to recurring problem. These patterns are usually divided into three major groups.
Control flow patterns convey solutions to problems pertaining process routing logic, resource patterns
deal with performer and resources allocation, while data patterns correspond to various operations that
are performed on data attached to processes or activities.

The workflow extension for SBA/SBQL that has been described in the previous chapter, having
its notation and process enactment logic flexible and generic, naturally supports numerous workflow
patterns. As it has been stated earlier, additionally to the SBA/SBQL extensions, a Java-based imple-
mentation of those extensions has been developed within this work. It uses XML markup controlled
by XML Schema definitions for defining and storing processes, as well as activities with their defini-
tions. In the following sections of this chapter, we will discuss support for workflow patterns in the
proposed SBQL extension, as well as in the XML notation developed for the needs of the Java-based
prototype. Detailed overview and description of the implementation itself will be described in the next
two chapters.

3.1 Control flow patterns

Control flow patterns are probably the most widely-known among all workflow patterns. These con-
structs are usually very simple, hence commonly understood. They have been applied in workflows
long before anybody had called them patterns. However, some of the control flow patterns are fairly
complicated and harder to comprehend, thus will be discussed more thoroughly.

Basic flow constructs The simplest alignment of activities in a process is the sequence pattern. As
the name indicates, activities are executed sequentially, one after another. In the developed prototype,
sequence can be easily achieved using preconditions - each activity will reference another within the
following activities section, and each one, will have to check precondition that the previous activity has
completed. SBQL and XML fragments listed below illustrate sequence consisting of two activities.

create activity {
name "a2";
...
preconditions {

waitfor {
(Activity where name = "a1").status = "COMPLETED";

}
}

} as a2;

create activity {
name "a1";
...
following_activities {

bag { a2 }
}

} as a1;

38 Control flow patterns

<activity>
<id>a1</id>
...
<following-activities>

<activity>
<id>a2</id>
...
<preconditions>

<condition wait="true">
<status>

<activity>a1</activity>
<value>COMPLETED</value>

</status>
</condition>

</preconditions>
</activity>

</following-activities>
</activity>

Another elementary pattern reflects split of control into two or more threads of execution. Con-
secutive activities are accomplished in parallel, hence the pattern is called parallel split. The created
workflow solution supports this pattern natively, without the need to explicitly specify the split. It can be
modeled by just placing several activities in the following activities section. The workflow management
system will by default carry them out in parallel. The snippets shown below describe process fragment
with activities B and C being executed in parallel, after execution of A. General, static structure common
to all split/choice patterns is illustrated in Fig. 19.

create activity {
...
following_activities {

bag { B, C }
}

} as A;

<activity>
<id>A</id>
...
<following-activities>

<activity>
<id>B</id>
...

</activity>
<activity>

<id>C</id>
...

</activity>
</following-activities>

</activity>

Control flow patterns 39

Figure 19: Split/choice patterns

Second construct, similar to the discussed above, is the exclusive choice. Unlike parallel split, this
one permits only one of subsequent activities to be executed, depending on a decision made beforehand.
This pattern can be easily achieved by using previous XML listing and adding relevant preconditions to
activities A and B. For example, the choice may depend on process-scoped attribute named decision
and set during execution of activity A. Then, precondition of B should read:

create activity {
name "B";
....
preconditions {

"B" in (attributes.attribute where name = "decision");
}

} as act1;

And, in the XML notation:

<preconditions>
<condition>

<attribute>
<name>decision</name>
<relation>EQ</relation> <!-- equals -->
<value>B</value>

</attribute>
</condition>

</preconditions>

Precondition of C would be similar, but it should check for different value inside the attribute tag:
<value>C</value>.

The last pattern from the split/choice group discussed here is the multiple choice. It can be described
as a general case of previous two patterns. Both kinds of behavior are permitted here: parallel split, as
well as exclusive choice. Just like in those patterns, multiple choice can be modeled by appropriate
preconditions, but this time conditions for both activities B and C can be satisfied at the same time.

40 Control flow patterns

Join/merge patterns Processes that have their execution paths parallelized, sometimes need to merge
those split branches back into one. This can be done in two general ways: the parallel process routes are
merged with synchronization, i.e. "thread" that has completed his work waits for the others, or, simply,
without any synchronization. Four patterns, representing these two approaches, will be described next.
General structure of those patterns is shown in Fig. 20.

Figure 20: Join/merge patterns

The most straightforward merge pattern is called, naturally enough, Simple Merge. It is a point
in the process where two or more branches converge into one. Let us consider this pattern using Fig.
20. Upon each execution of activities A or B, activity C will also get enacted, regardless of which
preceding task has been completed first or whether they both finished their work at the same time.
Important to mention here is the additional requirement of this pattern: regardless of the converging
branches number, next activity will be executed only once (exclusive or). The developed workflow
prototype notation can easily express Simple Merge. Given activities A, B, and C, the first two should
both have activity C placed in their following activities section. Additionally, activity C should contain
an exclusive or precondition, ensuring that only one of the preceding activities has been enacted. SBQL
and XML notation examples for the Simple Merge pattern will look like this:

create activity {
name "A";
...
following_activities {

bag { C }
}

} as A;

create activity {
name "B";
...
following_activities {

bag { C }
}

} as B;

create activity {
name "C";
...
preceding_activities {

bag { A, B }
}

Control flow patterns 41

preconditions {
(((Activity where name = "A").status = "COMPLETED") or
((Activity where name = "B").status = "COMPLETED")) and
(((Activity where name = "A").status <> "COMPLETED") or
((Activity where name = "B").status <> "COMPLETED"))

}
} as C;

<activity>
<id>A</id>
...
<following-activities>

<activity>
<id>C</id>
<preconditions>

<condition>
<xor>

<condition>
<status>

<activity>A</activity>
<value>COMPLETED</value>

</status>
</condition>
<condition>

<status>
<activity>B</activity>
<value>COMPLETED</value>

</status>
</condition>

</xor>
</condition>

</preconditions>
...

</activity>
</following-activities>

</activity>
<activity>

<id>B</id>
...
<following-activities>

<activity>
<id>C</id>
...

</activity>
</following-activities>

</activity>

The Synchronization workflow pattern is a bit different from what we just discussed. Here, the two
converging process paths are joined into one, thus synchronization between the two activities executed
in parallel is achieved. Considering above example, in this scenario, activity A or B (depending on
which one will be completed first) will have to wait until the other one finishes execution. Only then
activity C will be activated, and will run only once. This behavior can be modeled similarly as the
previous pattern example, but activity C should also contain additional preconditions:

42 Control flow patterns

• activity C should wait until both activities A and B complete execution

• status of activity C should be equal to NONE

The latter condition is essential for true synchronization to work. It ensures that activity C will not be
carried out several times (for each converging branch), as the status constant NONE denotes that this par-
ticular activity instance has not yet been executed. Provided that any of branches that are being merged,
will start this activity, its status will immediately be changed to RUNNING, thus no other "thread" will
be able to perform this task. Therefore, preconditions section of activity C, in SBQL extension, would
read:

preconditions {
waitfor {

((Activity where name = "A").status = "COMPLETED") and
((Activity where name = "B").status = "COMPLETED");

}
((Activity where name = "C").status = "NONE");

}

Whereas the same functionality written in XML notation would look like the following:

<preconditions>
<condition wait="true">

<status>
<activity>A</activity>
<value>COMPLETED</value>

</status>
</condition>
<condition wait="true">

<status>
<activity>B</activity>
<value>COMPLETED</value>

</status>
</condition>
<condition wait="false">

<status>
<activity>C</activity>
<value>NONE</value>

</status>
</condition>

</preconditions>

Sometimes there is a need to synchronize two process branches, but only if they both are activated
(both started, but none of them has finished). In the opposite case, simple merge should be done, without
any synchronization. This pattern is a combination of the two previously discussed - Synchronization
and Simple Merge. Synchronizing Merge, because that is how it has been called, is a bit more com-
plicated, but still can be represented in the notation developed for the needs of prototype. Preconditions
specification is, just like in preceding cases, key to solving this problem. However, this time it cannot
be depicted using pure XML. This reveals another feature of this workflow system, namely, conditions
specified in the form of Java classes. Such class has the access to activity-scoped or process-scoped

Control flow patterns 43

data, and basically everything that can be accessed from within the XML process specification. At run
time, condition classes are instantiated and appropriate methods are invoked to check whether those
conditions have been satisfied or not. To apply Synchronizing Merge pattern, we need to construct the
following precondition:

• if activity A is running, wait for it to complete

• else, if activity B is running, wait for it to complete

• in any other case, precondition outcome is true, hence it is satisfied

The last pattern that will be discussed from the merge patterns family, is the Multiple Merge. This
one is very simple, as it represents general behavior of Simple Merge, a workflow pattern described
above. Here, multiple branches of execution are joined, and any subsequent activities will be carried
out as many times, as many branches the process had before merger. This pattern is naturally supported
by the developed workflow notation and does not need any additional constructs. It is enough to define
three activities and to place reference to one of them in two others’ following activities section. Code
snippets shown below illustrate this scenario.

create activity {
name "A";
following_activities {

bag { C }
}
...

} as A;

create activity {
name "B";
following_activities {

bag { C }
}
...

} as B;

create activity {
name "C";
...

} as C;

<activity>
<id>A</id>
...
<following-activities>

<activity>
<id>C</id>
...

</activity>
</following-activities>

</activity>
<activity>

<id>B</id>

44 Control flow patterns

...
<following-activities>

<activity>
<id>C</id>
...

</activity>
</following-activities>

</activity>

N out of M Join and Discriminator Real life processes are rarely simple, and hence, they often
have many parallel branches that need to converge into one at some point of execution. Activities that
are next to this join point, need to be run only once, so only the first branch that finishes its previous
work is taken into consideration, and any subsequent branches are ignored. A bit more complicated
scenario may require completion of some specific number of preceding activities, in order to go on with
execution of another activity. General behavior that adheres to those requirements can be provided by
the N out of M Join pattern. In this construct, a specific number of parallel branches is required to
complete execution before the next one will be enacted. Fig. 21 shows this described situation - tasks
named from A to D converge into one process path, so that activity E will be run once only.

Figure 21: N out of M Join pattern

More specialized form of this workflow pattern is called Discriminator. Here, condition upon
which next activity’s execution depends, requires only one preceding activity to complete. Main dif-
ference between those two versions of a pattern lies in synchronization: in the first, general case, it is
accomplished partially, whereas in the latter scenario, no synchronization is performed. The proposed
Stack-Based Query Language extension, as well as XML notation developed for the prototype imple-
mentation supports these patterns explicitly, by enabling the process designer to specify exact number
of activities that need to be finished for the next one to start execution. This condition should be placed
in the preconditions section of the following activity, as defined below.

Control flow patterns 45

preconditions {
count(precedingActivities) >= 3;

}

<preconditions>
<condition>

<completed-preceding>3</completed-preceding>
</condition>

</preconditions>

This example condition will be satisfied only if three of the immediately preceding activities would have
been completed, i.e. would have their status equal to COMPLETED. In order to achieve the discrimina-
tor pattern’s behavior, condition value (or content of <completed-preceding> tag) needs to be
changed to 1.

Arbitrary Cycles Certain tasks or series of tasks require repeated execution, as long as relevant con-
ditions are satisfied. This concept resembles notion of loops, known from the area of computer pro-
gramming languages. It has been conveyed to the business process management field under the form of
arbitrary cycles workflow pattern. Basic structure of this construct is presented in Fig. 22.

Figure 22: Arbitrary Cycles pattern

This pattern can be easily applied in the proposed extension, by using preconditions of consecutive
activities. Let us consider alignment of tasks as in Fig. 22. We want to run activities B and C as long
as C’s attribute named loop is greater than 0, assuming that each iteration of this loop decreases that
variable by one. Therefore, preconditions section of activity B will contain the following condition:

preconditions {
((Activity where name = "C")
.attributes.attribute where name = "loop").value > 0;

}

<condition>
<attribute>

<activity>C</activity>

46 Control flow patterns

<name>loop</name>
<value>0</value>
<relation>GT</relation> <!-- greater than -->

</attribute>
</condition>

And, additionally, D will have to satisfy the following precondition in order to run:

preconditions {
((Activity where name = "C")
.attributes.attribute where name = "loop").value <= 0;

}

<condition>
<attribute>

<activity>C</activity>
<name>loop</name>
<value>0</value>
<relation>LE</relation> <!-- less or equal -->

</attribute>
</condition>

This last condition is necessary, otherwise task D would get carried out with every iteration of this loop.

Deferred Choice Defining the whole workflow process and all its details at design time severely
impairs flexibility, as real-life processes tend to change rapidly, responding to events received from the
environment, or even due to runtime calculations done within the process itself. That is why we need
a mechanism for dynamic selection of process paths at execution time. The deferred choice pattern
addresses those problems, enabling data-based routing of workflows. One, or possibly a few of process
paths can be chosen according to, for example, presence of data, or its certain value. This mechanism
is directly supported by the workflow system developed within this work. It enables not only dynamic
routing based on existing, pre-set attributes, but also according to variables that can be set from within
another activity. Let us consider a simple example, where one of two subsequent activities needs to be
selected, basing on preceding activity’s outcome. Thus, we need to define three activities. First one
will do some calculations, upon which the choice will be done. Second and third activity will follow
the first, and only one of them will execute, depending on the first task’s attribute named choice. To
model this scenario, we will use the following code:

create activity {
name "A";
...
following_activities {

bag { B, C }
}

} as A;

Control flow patterns 47

create activity {
name "B";
...
preconditions {

((Activity where name = "A").attributes.attribute where
name = "choice").value = true;

}
} as B;

create activity {
name "C";
...
preconditions {

((Activity where name = "A").attributes.attribute where
name = "choice").value = false;

}
} as C;

Or, the following equivalent XML markup:

<activity>
<id>A</id>
...
<following-activities>

<activity>
<id>B</id>
...
<preconditions>

<condition>
<attribute>

<activity>A</activity>
<name>choice</name>
<value>true</value>
<relation>EQ</relation> <!-- equal -->

</attribute>
</condition>

</preconditions>
</activity>
<activity>

<id>C</id>
...
<preconditions>

<condition>
<attribute>

<activity>A</activity>
<name>choice</name>
<value>false</value>
<relation>EQ</relation> <!-- equal -->

</attribute>
</condition>

</preconditions>
</activity>

</following-activities>
</activity>

In the above example process fragment, activity A is responsible for making appropriate calculations and

48 Control flow patterns

setting its attribute choice (activity-scoped attribute). Next, the two following activities B and C will
have their preconditions evaluated. As it is shown above, conditions in both of those activities depend
on previously set attribute, and hence, only one task will be executed (B for true, C for false).

Implicit Termination Business process execution can be interrupted as a result of critical error, or
their instances can be canceled at runtime due to specific circumstances. However, processes should
also cease to run upon completion of all contained activities, when no other task can be enacted, and
when the process is currently not in deadlock. This behavior is called implicit termination, and can
be modeled using SBQL, as well as the prototype XML notation without much effort. The process
manager module, responsible for launching processes and activities, will simply take no further action
when there are no activities to execute left.

create activity {
name "A";
...
following_activities {}

} as A;

create process definition {
activities {

bag { A }
}

} as processDef1;

<process>
<id>process1</id>
...
<definition>

<activities>
<activity>

<id>A</id>
...
<following-activities>
</following-activities>
...

</activity>
</activities>

</definition>
</process>

In this example, the following activities section is empty, denoting that there are no more activities
defined within the process. Thus, process management engine will terminate this process implicitly.

Multiple Instances Business requirements often demand certain tasks to be performed several times,
depending on data, external events or within some specified time period. Those work items may differ
between each other (eg. processing each element from the list in separate activity) or may be required
to act exactly the same way. Hence, there has been identified a group of workflow patterns that share

Control flow patterns 49

common name - multiple instances. Constructs from this category represent two main behaviors: mul-
tiple instances with a priori knowledge (i.e. predefined at design time or at runtime), or without a priori
knowledge (calculated during process execution or as a result of external events) about number of in-
stances. Both of those workflow pattern classes are covered by the developed prototype notation, and
supported by the process manager module. When designer knows how many times specific activity is
required to run, she may denote it as follows:

create activity {
name "A";
instances { 3 }
...

} as A;

Or, using the prototype’s XML notation:

<activity>
<id>A</id>
...
<instances>

<number>3</number>
</instances>

</activity>

This means that activity A will be executed exactly 3 times, and this number cannot change at runtime.
Another case is when process designer does not know the exact number of instances, but knows how

it can be calculated at runtime.

create activity {
name "A";
...
instances {

(attributes.attribute where name = "inst").value;
}

} as A;

<activity>
<id>A</id>
...
<instances>

<attribute>inst</attribute>
</instances>

</activty>

The above example shows a sample application of the pattern, without explicitly specifying number of
instances. Attribute inst will convey required information, and task A will be instantiated many times
according to it. This is a more flexible approach, as any preceding or external activity can change value
of the inst variable, thus specifying number of instances to execute.

50 Resource patterns

3.2 Resource patterns

Second, but equally important group of workflow patterns is related to dealing with resources. This is a
vast area of workflow management and spans assignment of tasks to performers, as well as non-human
resource allocation. Some patterns of this group, analogously to control flow patterns, have been applied
since the beginning of business process management, without explicitly using their names or thinking
as of patterns.

Direct Allocation The simplest, most straightforward and inflexible approach to task distribution is
to assign activities to performers precisely specified at design time. Choice made that way cannot
be undone, and the work item cannot be delegated to any other resource at process execution time.
However, sometimes the need arises to constrain certain activities’ performers to particular identity,
rather than group or role. The direct allocation pattern enables this behavior, and it is naturally supported
by the developed XML notation, as well as SBQL extension. Let us consider the following example:

create activity definition {
performer {

Employee where name = "JohnDoe01";
}
...

} as ADef;

And the XML markup, which does the same:

<activity>
<id>A</id>
<definition>

<performer>
<direct>JohnDoe01</direct>

</performer>
...

</definition>
...

</activity>

By using direct performer type, it is specified that no other identity, but JohnDoe01, can carry out
this task.

Role-Based Allocation Next workflow pattern slightly enhances flexibility, yet still building on the
concept of previously discussed one. This time, designer has to specify a group name, which members
will be capable of performing the task. At run time, the resource management module is responsible
for selecting eligible users of specified role, and assigning this activity to one of them. Role-based
allocation, because that is how this construct is called, is also supported in the developed workflow
system. It has even been implemented in somewhat extended form, as it allows to denote several roles,
each of which containing performers capable of accomplishing the activity. This concept is similar to
the authorization workflow pattern, where multiple resources can be specified as capable of performing
a task. Example of role-based allocation will look like the following.

Resource patterns 51

create activity definition {
performer {

Employee where roles.roleName in
("Clerks", "Managers", "Analysts");

}
} as ADef;

<activity>
<id>A</id>
<definition>

<performer>
<roles>

<role>Clerks</role>
<role>Managers</role>
<role>Analysts</role>

</roles>
</performer>
...

</definition>
...

</activity>

As we can see, task A can be carried out by any resource that belongs to role Clerks, Managers,
or Analysts. Specific identity will be chosen at run time, depending on current resource allocation
algorithm that will be described in the next chapter.

Deferred Allocation In previous section, we have discussed the Deferred Choice pattern, from the
control-flow patterns group. Deferred Allocation is nothing more, but a construct that resulted from
porting Deferred Choice concept to the area of resource management. Here, choosing performer for
specific task is delayed until run time - process designer does not even have to know who should do it or
what skills should he or she represent. Developed workflow prototype supports this pattern explicitly, by
using activity attributes. All that needs to be defined at design time is the name of an attribute that will
point to relevant performer at runtime. Value of this variable can be set, for example, during execution
of preceding activity, like in the following example.

create activity {
name "A";
...
following_activities {

bag { B }
}

} as A;

create activity definition {
name "BDef";
performer {

Employee where
((attributes.attribute where name = "performer").value)
in name;

}

52 Resource patterns

} as BDef;

create activity {
definition BDef;
...

} as B;

<activity>
<id>A</id>
...
<following-activities>

<activity>
<id>B</id>
<definition>

<performer>
<attribute>performer</attribute>

</performer>
...

</definition>
...

</activity>
</following-activities>

</activity>

In the above process fragment, automatic activity A is responsible for determining who will perform
activity B. Then, upon commencement of task B, resource management module will try to assign an
appropriate resource to it, according to the value of attribute performer.

Capability-Based Allocation Ability to allocate resources directly, by role, or even to defer work item
assignment until runtime, does not suffice in some cases. Let’s say that we want to confine performers
of task "MakeCreditDecision" only to people that have at least 10 years of experience, and at most 60
years of age. It would be hard to select resource that would match those criteria by applying mentioned
patterns. Eligible resources could belong to different groups or organizational units, and hence it is not
feasible to assign activity to such performers only by role. Capability based allocation pattern facilitates
constructing such criteria at design time. Then, at process execution time, those rules would be evaluated
and task would be assigned to conforming resources. This workflow pattern is also supported and can
be expressed in the extended SBQL. In order to obtain described scenario, we would have to produce
the following SBQL code:

create activity definition {
performer {

Employee where (experience >= 10 and age <= 60);
}

} as MakeCreditDecisionDef;

Or, analogously, the following XML code in the developed prototype notation:

Resource patterns 53

<activity>
<id>MakeCreditDecision</id>
<definition>

<performer>
<capabilities>

<capability>
<capability-name>experience</capability-name>
<capability-value>10</capability-value>
<capability-relation>GE</capability-relation>

</capability>
<capability>

<capability-name>age</capability-name>
<capability-value>60</capability-value>
<capability-relation>LE</capability-relation>

</capability>
</capabilities>

</performer>
...

</definition>
...

</activity>

Random Allocation A certain group of workflow patterns has been identified as helpful in assigning
resources to tasks. Those are specific rather to resource management implementation, than to notation.
First pattern of this group that will be discussed is called Random Allocation. As the name suggests, ac-
cording to this resource allocation algorithm, performers are given activities on a random basis, despite
the amount of tasks that they are currently performing or tasks that await in their individual queues. This
allocation algorithm has been implemented in the developed workflow management solution, as one of
several methods for performer allocation. In order to use Random Allocation, we have to specify this
allocation algorithm in the process definition, like in the following example:

create process definition {
...
allocation "RANDOM";

} as PDef;

In the case of the XML-based implementation, the process definition should contain the following code:

<process>
<definition>

<resource-allocation>random</resource-allocation>
...

</definition>
...

</process>

The resource manager module will read this attribute and allocate resources to tasks within this process
according to the specified method.

54 Resource patterns

Shortest Queue Another kind of performer allocation has been identified as the Shortest Queue work-
flow resource pattern. Here, decision who will be assigned to carry out given task, depends on the num-
ber of activities that have already been allocated to this resource. Performer who has the least number
of work items allocated will be the first candidate to execute tasks distributed this way. Even when there
are several resources eligible for execution of particular work items, the least loaded will be chosen
first. Similarly to the previous pattern, choice of Shortest Queue method will have to be specified in the
allocation section of the process definition:

create process definition {
...
allocation "LOAD_BALANCE";

} as PDef;

Similarly, the <resource-allocation> section is responsible for the same in the XML notation:

<process>
<definition>

<resource-allocation>load-balance</resource-allocation>
...

</definition>
...

</process>

Case Handling Some situations in business process management require each process instance to be
executed by exactly one resource, i.e. all tasks within such processes need to be assigned to the same
performer. This method of work items distribution can speed up running activities, especially when
allocated resource needs to have knowledge about process history or progress. This construct is called
Case Handling, and has also been implemented in the prototype workflow system. It can be applied
analogously to other patterns from this group:

create process definition {
...
allocation "CASE_HANDLING";

} as PDef;

<process>
<definition>

<resource-allocation>case-handling</resource-allocation>
...

</definition>
...

</process>

Upon assignment of resources to work items of this process, the engine will first look at previous activ-
ities’ performers and reallocate them to this task. If this is the first activity within the whole process,
resource will be chosen randomly from the group of eligible performers.

Resource patterns 55

Commencement on Creation / Allocation Delays that occur during process execution usually result
from waiting time after particular work item is created and before it is enacted. In some circumstances
there is a need to start execution immediately after task is created, without unnecessarily waiting for
performer allocation or waiting in the resource’s work queue. That is why resources should be allocated
to those activities almost at the time of creation, so that commencement could begin instantly. Described
construct has been identified as the Commencement on Creation pattern. It is naturally supported by the
developed workflow engine - all activities are, by default, executed immediately, as long as resources
suffice. Moreover, the XML notation enables process designer to determine specific resource that will
be assigned to this particular task at design time. Hence, those tasks will be eligible for execution
immediately after creation.

There has also been identified a pattern that is closely related to Commencement on Creation and
is called Commencement on Allocation. The only difference is that in the latter case, work items can
be created, but cannot be enacted until they are assigned to appropriate resources. After that, com-
mencement begins promptly. Workflow engine and notation that have been developed within this work
also support this construct. Process manager module invokes relevant methods of the resource manager,
which results in performer allocation. Then, activity is available for instant execution.

Simultaneous Execution Business processes in the real world tend to be long-running because of
many factors, like involving data exchange with external systems, waiting for customer’s response, or
because of resources shortage. When particular performer starts carrying out a task and then waits
for some events to occur, he or she may meanwhile work on another task or case. By starting several
activities at a time, there is a greater probability that all of them will be finished earlier and working
time would be utilized the best way. Otherwise, each task would be executed sequentially, effectively
decreasing total workflow throughput. This notion of assigning more that one activity at a time to a
single resource is called Simultaneous Execution. It is supported by the developed workflow solution,
as it does not limit particular resource’s task queue size. Thus, several work items may be assigned to
single performer, fostering parallelization of work, and hence boosting overall workflow throughput.
The following SBQL and XML examples depict construct described above:

create activity definition {
...
performer { Employee where name = "JohnDoe01"; }

} as ADef;

create activity definition {
...
performer { Employee where name = "JohnDoe01"; }

} as BDef;

create activity {
definition ADef;
...

} as A;

create activity {
definition BDef;
...

} as B;

create process definition {
activities {

56 Resource patterns

bag { A, B }
}
...

} as PDef;

<activity>
<id>A</id>
<performer>JohnDoe01</performer>
<following-activities>

<activity>
<id>B</id>
<performer>JohnDoe01</performer>
...

</activity>
</following-activities>
...

</activity>

This simple process definition assigns two tasks - A and B - to the same performer - JohnDoe01. Upon
execution of this process, workflow engine will allocate both activities to the same resource, so that A,
as well as B will be on JohnDoe01’s work list, eligible for simultaneous enactment.

Automatic Execution Even in real life processes, not all tasks are accomplished by real people. Many
of the activities are required to be run automatically, for example by launching external procedures, or
performing some heavy calculations related to business logic. The automatic execution pattern is a natu-
ral complement to all the mechanisms that assume human presence during realization. Proposed SBQL
workflow extension requires use of the work clause to specify behavior, whereas the implemented form
of this pattern enables process designers to attach Java classes to particular activities. Additionally, those
tasks need to have their performer attribute set to AUTO, as it is shown below.

create activity definition {
work {

/* SBQL code to be executed */
}
performer { "AUTO"; }

} as ADef;

<activity>
<id>A</id>
<definition>

<id>A-definition</id>
<class>CalculateDiscount</class>

</definition>
<performer>AUTO</performer>
...

</activity>

Data patterns 57

The former code snippet will make the process engine execute code enclosed within the work statement,
and in the latter example, process management engine will execute the procedural part by looking for
the Java class named CalculateDiscount, then by instantiating it and invoking appropriate method
thereof.

3.3 Data patterns

Much effort has also been put in identifying common constructs related to data handling within workflow
management. Those patterns involve mechanisms for storing, transferring and accessing data, as well as
dynamically selecting process paths according to activity or process-scoped information. All of the data
patterns described below are explicitly or implicitly supported by the workflow management system
developed within this work.

Scoping and Accessing The first group of data patterns that will be discussed, are common constructs
related to data visibility during process execution. They are rather tools than patterns themselves, as
they only constitute some foundations for dynamic data-based routing or communication with external
systems. The developed workflow engine and notation explicitly support two scopes, namely: Task
Data and Case Data. The first one is very simple and may be used to store local information like
calculation outcomes, or temporary task data. Going further to the second pattern, designers can define
attributes that span the whole process instance, i.e. are accessible from any of tasks that make up this
business process. This approach can be useful when one wants to publish information belonging to one
single activity, to the whole process. In order to store or manipulate data visible within those two scopes,
the process designer needs to define task-level attribute for Task Data or process-level attribute for Case
Data. Both of these scenarios have been illustrated below.

Task Data:

create activity definition {
attributes {

attr1 : string;
}
...

} as ADef;

<activity>
<id>A</id>
<definition>

<id>A-def</id>
<attributes>

<attribute
name="attr1"
class="java.lang.String"
comment="Activity scoped attribute"

/>
</attributes>

</definition>
...

</activity>

58 Data patterns

Case Data:

create process definition {
attributes {

attr2 : integer;
}
...

} as PDef;

<process>
<id>P</id>
<definition>

<id>P-def</id>
<attributes>

<attribute
name="attr2"
class="java.lang.Integer"
comment="Process scoped attribute"

/>
</attributes>

</definition>
...

</process>

Apart from those two directly supported constructs, the developed process management system also
supports one more workflow pattern related to data visibility, but on the implicit basis. Subprocesses
nested inside other processes constitute a form of scope other than just task or case. Infinitely nestable
processes provide subprocess data scope, which in fact can span any number of tasks or subprocesses
nested within. This indirectly supported pattern is called Scope Data.

Data elements described in one of the above scopes needs to be accessed either by the same activity,
other activity from the enclosing process or even an external system. Those attributes can then be used
in further processing (eg. calculations), transformed, or passed further to another system. Hence, three
similar workflow data patterns can be identified here - Task to task, Block Task to Sub-Workflow De-
composition, and Sub-Workflow Decomposition to Block Task. While the first one involves accessing
activity’s attributes from another task of the same process, the second and third construct implementa-
tions take advantage of nested subprocesses in order to enable two way data access between the task
which contains subprocess, and all the activities that constitute this subprocess.

Data-based conditions and routing The workflow management concept and implementation that
has been developed within this work greatly emphasizes flexibility and dynamic process path selection
during process execution. Hence, patterns involving various decisions depending on data existence or
value, have been implemented thoroughly as many other features hinge upon their functionality. The
Task Precondition pattern is probably the most viable and the most frequently used construct among
all workflow data patterns. By applying it, process designer can model other important constructs from
the Control Flow group, like N-out-of-M Join or Arbitrary Cycles. The following SBQL and XML
examples show a typical usage of Task Precondition in order to select one of three alternative paths:

Data patterns 59

create activity {
name "B";
preconditions {

((Activity where name = "A").attributes.attribute where
name = "credit_amount").value < 10000;

}
} as B;

create activity {
name "C";
preconditions {

((Activity where name = "A").attributes.attribute where
name = "credit_amount").value between 10000 and 1000000;

}
} as C;

create activity {
name "D";
preconditions {

((Activity where name = "A").attributes.attribute where
name = "credit_amount").value > 1000000;

}
} as D;

<activity>
<id>B</id>
<preconditions>

<condition>
<attribute>

<activity>A</activity>
<name>credit_amount</name>
<value>10000</value>
<relation>LT</relation> <!-- less than -->

</attribute>
</condition>

</preconditions>
</activity>

<activity>
<id>C</id>
<preconditions>

<condition>
<and>

<condition>
<attribute>

<activity>A</activity>
<name>credit_amount</name>
<value>10000</value>
<relation>GE</relation> <!-- greater or equal -->

</attribute>
</condition>
<condition>

<attribute>
<activity>A</activity>
<name>credit_amount</name>
<value>1000000</value>

60 Data patterns

<relation>LE</relation> <!-- less or equal -->
</attribute>

</condition>
</and>

</condition>
</preconditions>

</activity>

<activity>
<id>D</id>
<preconditions>

<condition>
<attribute>

<activity>A</activity>
<name>credit_amount</name>
<value>1000000</value>
<relation>GT</relation> <!-- greater than -->

</attribute>
</condition>

</preconditions>
</activity>

Those three activities represent consecutive process paths, from which only one has to be chosen.
The choice depends on the value of credit_amount attribute set during execution of preceding
task. For small amounts, manager’s acceptance is not needed, whereas in the second case (for amounts
between $10,000 and $1,000,000) - manager’s acceptance is required. There is also a third case, where
credit amount is greater than $1,000,000. Then, a managing director needs to confirm credit. As we
can see, no two paths can be selected simultaneously, because of exclusive preconditions for each of the
subsequent activities.

Similar construct is the Task Postcondition. Unlike Task Precondition, this one introduces condi-
tion check after particular activity has completed. It can be useful in situations when the process has
to wait until specific task- or process-scoped attribute is set or equal to some predefined value. The
following sample scenario can illustrate one of these situations:

create activity definition {
name "PrepareAnnualSalesReportDef";
attributes {

calculated_data : integer;
}

} as PrepareAnnualSalesReportDef;

create activity {
name "PrepareAnnualSalesReport";
definition PrepareAnnualSalesReportDef;
postconditions {

waitfor {
((Activity where name = "PrepareAnnualSalesReport")
.attributes.attribute where
name = "calculated_data").value <> null;

}
}

}

Data patterns 61

<activity>
<id>PrepareAnnualSalesReport</id>
<definition>

<id>PrepareAnnualSalesRepostDefinition</id>
<attributes>
<attribute

name="calculated_data"
class="java.lang.Integer"
comment="Container for data calculated during execution"

/>
</attributes>

</definition>
<postconditions>

<condition wait="true">
<attribute>

<activity>PrepareAnnualSalesReport</activity>
<name>calculated_data</name>
<relation>NN</relation> <!-- not null -->

</attribute>
</condition>

</postconditions>
...

</activity>

Here, task named PrepareAnnualSalesReport only coordinates sales report preparation, but
the actual processing and calculations are delegated to some external subsystem, whose role is to do
some heavy processing and put results in an appropriate task attribute. Therefore, this activity will
finish immediately upon reception of that externally calculated data.

Sometimes a need arises to start execution of specific task upon some event, usually triggered by
data changes. This scenario can be initiated from the outside (i.e. by external system), as well as
from the inside - by other activities or processes running inside the same workflow engine instance.
The situation described above is in fact a special case of the Task Precondition pattern, called Task
Trigger. Representation of this construct in the developed XML notation is straight forward. Like it
was mentioned above, it can be modeled by using task precondition with wait parameter set to true,
so that the process management engine could wait for the triggering event to occur. Behavior of the
Task Trigger data pattern can be represented by the example SBQL code shown below.

create activity {
name "OrderNewItems";
preconditions {

waitfor {
(attributes.attribute where name = itemCount).value < 10;

}
}

} as OrderNewItems;

Or, with the following XML markup:

62 Data patterns

<activity>
<id>OrderNewItems</id>
<preconditions>

<condition wait="true">
<attribute>

<name>itemCount</name>
<value>10</value>
<relation>LT</relation> <!-- less than -->

</attribute>
</condition>

</preconditions>
...

</activity>

Here, the activity named OrderNewItemswill be launched immediately after the value of itemCount
attribute falls below 10.

The last workflow data pattern that will be discussed is Data-based Routing. Being a kind of a
generalization, it depicts behavior of several previously described constructs. It is defined as the ability
to alter business process flow during its execution, as a result of data events. As it has been proven
in previous paragraphs, the designed workflow notation and management system fully supports data
patterns involving dynamic process changes - Task Precondition, Task Postcondition and Task Trigger.
Thus, being general and flexible by design, it also supports the broad form of those constructs - the
Data-based Routing pattern.

4 Features and capabilities of the developed workflow management solu-
tion

Today’s workflow management systems are usually based on traditional approaches to this subject, for
example theoretical foundations like Petri nets. Those systems have severely limited flexibility, when
it comes to performing distributed and truly parallel tasks. Processes managed that way are not only
limited to available resources, but also to keeping all activities in sequences. However, many of those
activities can be successfully parallelized, as far as processing is concerned. The only bottleneck in
this model are available resources or lack of them. This concept is much closer to reality than sticking
tightly to sequential alignment of activities that should otherwise be performed in parallel. The devel-
oped workflow management solution is an attempt to go beyond the sequential processing model and to
parallelize process execution as much as possible. Notation developed for this prototype supports the
above concepts - if not specified otherwise, all activities are carried out in parallel. Another invaluable
feature is capability of nesting workflow processes. Such nested processes do not have to "know" about
each other, hence they can be infinitely nested without any notable performance overhead or scalability
loss. During the design of data structures for business processes, much emphasis has been put on gener-
ality, which benefited in wide applicability and flexibility of process specification. Even very complex
business processes can be stored and executed using relatively simple and intuitive XML syntax. Every
construct related to routing of processes can be specified by using pre- and postconditions. These con-
ditions can depend on many factors, such as absolute date and time, delay after the preceding activity
or process has ended, or even according to data contained in particular process or activity. The proto-
type also enables users to specify a condition as a Java class that implements well-defined interface. At
runtime, those classes are executed and the outcome is checked for true or false. As it was stated above,
process execution depends on availability of required resources. In this workflow solution, resource
allocation has also been considered, as being crucial to proper business process handling. Resources are
divided into two main groups: human and non-human. While non-human resource allocation is achieved
simply by specifying which resources are needed by particular activities, the human resources alloca-
tion is a bit more complicated. Module responsible for this enables assigning resources to roles, adding
capabilities to particular resources and during the process execution, dynamic allocation of human re-
sources according to roles, skills or other characteristics (i.e. experience, age, and so forth). There are
also available three algorithms for distribution of tasks among available resources: load balancing (as-
signing tasks to resources that have the minimum number of tasks assigned), random (assigning tasks
to one of the eligible resources randomly), and case handling (for particular workflow process, tasks
are assigned to the same resource, if not specified otherwise). Workflow management systems should
integrate easily with developed information systems, providing all the features in the form of clear and
concise API. The developed prototype system is no exception to this rule. It not only exposes public
interfaces to manipulate processes or resources, but also enables the external system to execute XPath
queries directly on the underlying workflow data. Using this feature, one can perform simple queries
like list of given user’s tasks or even achieve more advanced functionality like reporting. Failures or
exceptional situations during execution of business processes occur very often in the real world and to
reflect this, the solution also has support for error handling and compensation. Process designer’s task is
to define special Java classes and assign exceptions to them. Everything else is managed by the Process
manager module - in case of an error that designer or developer specified, the special compensation
procedure is run, which reverts the effects of erroneous process. Another important issue in workflow
management systems is data handling. Among numerous commercial systems, data can be attached to
individual activities, processes or even instances of the management systems. Sometimes, the data can
even be transfered to other processes or external systems. Approach to data handling in the developed

64 Technologies and tools used

workflow system has been kept quite simple and general, yet flexible and powerful. Data can not only be
assigned to particular process instance or activity, but it can be manipulated by automatic tasks carried
out as Java classes. What is more, pre- or postcondition checks can depend on data contained in any
part of the process, enabling system architects to design efficient and flexible data-based routing.

4.1 Technologies and tools used

Numerous tools and technologies have been used to develop this workflow solution. Starting from
J2EE standards implementation, through various XML-related technologies, unit testing frameworks
and ending with build automation and dependency management tools. All of those have been chosen
according to the needs of the project. None of them has been applied without profound consideration
and together they constitute a framework that greatly simplifies development and promotes sound design
principles.

J2EE standards The most fundamental decision was whether to use J2EE application server or de-
velop a stand-alone Java application framework that does not need to run within application server
environment. The main factors that influenced this decision was distribution of process execution and
inherent thread safety of operations carried out within J2EE application server. Another benefit of using
J2EE application server was declarative transaction demarcation (Container Managed Transactions) and
declarative security managed by the server. Two types of Enterprise JavaBeans have been used, namely:
stateless session beans and message driven beans. Although the session beans are used only as adapters
between remote clients and POJO (Plain Old Java Objects) service implementation and for transaction
demarcation, the application of message driven beans with JMS (Java Message System) has profound
implications and fundamental meaning for the developed solution.

XML Schema This standard of XML documents syntax control has been established by the World
Wide Web Consortium and has proven its value in numerous professional application deployments. It
enables exchange of data in a well-defined form between homogeneous or heterogeneous systems. As a
standard, it is vendor independent, so various implementations on different platforms should exchange
data easily and without additional effort put into conversion of documents. In this workflow management
solution, XML Schema has been applied to restrict correct form of process, activity, as well as other
entities used along the system. Data in this system is stored in XML format, so XML Schema enforces
syntactic rules while writing or parsing documents.

XMLBeans XML Schema with XML would not retain its full power without delivering its strong
typing to the Java world. XMLBeans developed by Apache Software Foundation (created by BEA
Systems and donated to ASF) is an open-source, easy to use framework for generating Java classes
from XML Schema documents. This enables developers to write code and create structures that can
be easily serialized to an XML format or the other way around - parse XML files into Java objects
containing appropriate data. This library also enables developers to use XPath queries on Java objects
in order to retrieve needed data. The workflow management system uses XMLBeans extensively - to
create, manipulate and search for objects containing process, activity and resource information. It is the
foundation of the Process Manager module.

JUnit Quality software, likely to change along the development process, requires some assurance that
previously implemented features will not be broken by those added more recently. In small applications,
every feature can be easily tested by running some examples by hand, however as the code gets more

Two approaches to workflow management 65

and more complex, testing by hand can get tedious, error-prone, and it can take very much time. Even
then one can’t be sure that every possible case has been tested. Here is where automated unit testing
tools do their job. JUnit is the most popular and the most widely-used unit testing framework for
Java. It is simple, yet very powerful. All the developer has to do is write simple testing method (a
test case) with assertions for each case from the application code to be tested. Then, all unit tests can
be run automatically, assuring that everything works correctly. JUnit has been used in this project to
test operations performed by main modules of the application. It integrates well with existing build
automation tools (like Maven) enabling tests to be run automatically with each build.

Maven 2 It is hard to maintain all resources in most of serious projects developed nowadays - compile
source files, generate appropriate descriptors, run automatic tests, put necessary resources as well as
compiled class files into packages. This takes much time to do by hand, can be error-prone and in the
long run very frustrating. Maven 2 is a second, enhanced and improved version of popular Maven build
tool. Maven not only manages all files in a project, but also takes care of all required dependencies (e.g.
libraries needed to build application). It also integrates well with existing build tools (like Apache Ant)
and IDEs (like Eclipse) enabling developers to boost development and deployment.

4.2 Two approaches to workflow management

Two disjoint implementations have been developed. First one is a thread-based, stand-alone library that
can be run with a simple Java application, without imposing any design decisions and with no further
implications on the application architecture. This implementation is not distributed, does not use trans-
actions and can be run only within single virtual machine. It has been used mostly as an early prototype
and implementation of conceptual foundations for the second prototype, and thus has not been included
with this work. The second one is more complex and requires some additional infrastructure. The ap-
plications that use it must be run within a J2EE application server, because modules of the workflow
management system are implemented as EJB components and use transactions managed by the con-
tainer. This approach is mainly based on asynchronous message processing - messages are emitted by
JMS client and they are consumed by message-driven EJB components. This architecture greatly sim-
plified code related to concurrent processing that would otherwise be hard to debug and maintain. What
is more, EJB components deployed in the container gain transactional behavior, security and many other
services done by the container. With this approach, distributed processing can be achieved very easily
and transparently to developers of applications that use this workflow management solution.

4.3 Process management module and resource management module

Main components of the project are the process and resource management modules. First of them
enables external system’s programmers to create, launch and manipulate workflow processes, as well
as single activities that those processes consist of. It takes care of the data passed along the process,
pre- and postconditions checks, error and compensation handling, and thus, the whole logic related to
workflow routing. Any serious workflow solution could not exist without considering resources, hence
a module responsible for resource management has also been developed in this project. It enables the
process to allocate just any kind of resources - people, computers, rooms, equipment, etc., in a storage-
independent manner. What is more, applications that will use this module, will have access to user and
resource management operations, such as creating new users, users’ role and capability management or
available resources management and monitoring.

66 Running an example process

4.4 Running an example process

Together with the created workflow management engine, a windows-based application has also been
developed in order to launch and visualize processes. Two example processes have been created: the
discussed in previous chapters Insurance Claims Handling process, and the Organize Trip process that
is likely to be carried out by a travel agency. Execution of those processes can be achieved by running
the supplied Workflow GUI application, and selecting appropriate process from the drop-down list, as
shown in Fig. 23.

Figure 23: Workflow GUI Application

From this window, one can load a process, so that it will be shown in the form of a graph. Now, the
selected process can be launched by clicking the "Launch Process" button. The screen shot in Fig. 24
shows graph of the Insurance Claims Handling process.

Figure 24: Example process graph

Activities are shown as filled circles, whose interior color depends on the current status. There are
two additional vertices in each generated graph, named START and FINISH, which are not real ac-
tivities, but have been added for clarity and comprehensibility purposes. After clicking the "Launch
Process" button, vertices’ color changes can be observed, which means that the activities are being car-
ried out. In the Insurance Claims Handling process, the first path selection is done within the "Classify"
activity. Its status is set to NOTIFIED by the process management engine, which means that at this
point, the process is waiting for user’s decision. By clicking vertex representing this activity with the
left mouse button, user can choose appropriate value for an attribute from the window shown in Fig. 25.

Running an example process 67

Figure 25: Attribute selection window

Once the "Accept" button is clicked, the workflow engine will choose relevant process path accord-
ing to the following activities’ preconditions. The "Decide" task, on the other hand, is the point in the
workflow process, where previously split paths converge into the single execution route. This is another
task, where user is responsible for selecting attribute’s value and thus altering the process flow - the
"Pay" activity will be carried out only if the "decision" attribute has been set to "true".

Figure 26: Finished process

The process graph after execution is presented in Fig. 26. Note that in this particular case, the
claim has been classified as simple, and later on it has been rejected (the "Pay" activity has not been
executed). The mapping between activity statuses and colors is shown in Fig. 27. The difference
between "Finished" and "Completed" statuses is that activities with the former status have successfully
finished their procedural part and at that moment, their postconditions are being evaluated. The latter
one means that an activity has completed execution, and its postconditions have been evaluated to true,
enabling the workflow to proceed to another tasks.

Figure 27: Activity statuses and their respective colors

5 Design decisions justification and description of the architecture

5.1 General description of implemented architecture

Main goals that we were trying to achieve during development of this project was generic approach
to workflow management, extensibility, reliability, portability by design and lightweight architecture.
The most important components of this system, namely the Process Manager and Resource Manager
were designed as loosely coupled and lightweight modules. Both of these services have been devel-
oped as POJO services wrapped with session EJBs, which greatly simplified unit testing outside of the
container - session EJBs are just adapters that invoke services’ methods. Communication is done in
an asynchronous manner, which means that workflow process execution can be as much parallelized as
possible. Key technologies used to develop this messaging infrastructure were Java Message System
and Message Driven Beans. Although this is a lightweight approach, it’s also very reliable thanks to
inherent thread-safety of Enterprise JavaBeans running inside the container. Declarative transaction de-
marcation is another value added by the container and leveraged in this project. Declared transactions
are at runtime managed by the application server, which means that every method in workflow manage-
ment module, as well as resource management module is executed in an atomic manner. Yet another
benefit of using J2EE container is declarative security - all the developer has to do is declare roles and
principals eligible to perform specific operations and the actual control and security checks are managed
by the server.

5.2 Detailed information about the developed components

Process management module

Central point of all operations related to process execution is the process management module. It has
been implemented as a POJO service - simple Java object that exposes public methods for manipulating
processes and activities. It then has been wrapped with a stateless session bean for security, transaction
management and thread safety purposes, as stated in the above section. Process management module
accesses data access object, which in turn provides methods for direct manipulation of data. Execution
of a process is started by invoking the appropriate method from the process management module’s inter-
face, and during the execution, asynchronous messages (JMS) are sent to appropriate consumers, which
are Message Driven Beans. First one is an Activity Executor - once it receives message containing
data about activity to run, it executes it immediately by instantiating relevant class and invoking meth-
ods from its well-defined interface. As particular task completes its execution, another asynchronous
message is sent, but this time to the Activity Observer message driven bean. Upon reception of this mes-
sage, the observer reacts to event contained in it - typically just an activity status change notification, and
sometimes an error message. There can be many EJB MDB components acting as Activity Executors
and Activity Observers, possibly distributed throughout the network, however this distribution would
be transparent to the message producers. This approach greatly increases scalability of potentially dis-
tributed workflow processing, while thread safety and transactional behavior is retained. The sequence
diagram in Fig. 29 illustrates actions described above in more detail.

This module provides a coarse-grained interface for the client applications that use it, enabling easy
integration and hiding from the users all the implementation details. The most significant operations
contained in this interface have been listed below.

• create process instance

• launch process

Detailed information about the developed components 69

Figure 28: General view of the system’s architecture

70 Detailed information about the developed components

Figure 29: Launching process instance

• create/retrieve/update process attribute

• create/retrieve/update activity attribute

For more detailed specification of process manager’s interface, please refer to Appendix C.

Resource management module

Another service object that has been implemented in the prototype, is the resource management module.
For consistent architecture and clear design, this module has also been developed as a simple Java ob-
ject, exposing appropriate methods for manipulating resources. Again, there has been created a stateless
session bean, dedicated to wrapping this POJO, and hence, providing transaction handling, declarative
security, and thread safety. This component would be deployable and executable inside J2EE container.
Unlike the process management module, this service does not utilize distributed messaging, such as JMS
- it only accesses relevant data access object and by using it, performs all the data manipulation opera-
tions. This module’s interface provides several useful methods that can be invoked from within process
management module, as well as by this module’s potentially remote clients. Noteworthy methods from
the former group are as follows:

• allocate resources to activity

• allocate performer to activity

• deallocate resources from activity

Description of applied design patterns 71

The public interface exposed to other clients, that are not a part of this workflow management sys-
tem, limits functionality to only those operations that are not invoked from within process management
module. It contains methods that provide the following functionality:

• create/retrieve/update/remove user

• create/retrieve/update/remove role

• create/retrieve/update/remove resource

Detailed description of those components’ API, together with legal parameters, returned values, and
thrown exceptions, has been placed in Appendix C.

5.3 Description of applied design patterns

As a design pattern, we understand a common solution to recurring problem. First design patterns
appeared as an architectural term, originally coined by Christopher Alexander. Since then, pattern
language has been widely adopted in computer science, especially in object oriented design and devel-
opment. They not only provide solutions to design problems, but constitute a kind of common language
that helps easily exchange concepts between designers or architects. In our workflow solution, we have
also applied several object oriented design patterns that simplify development and promote code reuse.

Observer Typical graphical user interface libraries or frameworks, especially those written in Java,
use the event-driven model. It means that a particular action taken by the user, triggers some procedures
that respond to that action. The user action is called an event, and that special procedure is an event
handler. The Observer design pattern is conceptually equal to those briefly described solutions in case
of user interfaces, however it is more general and does not impose any concrete technologies or imple-
mentation strategies. In this workflow system, two observers have been created - first one reacts to new
processes that are ready to be executed, and the second one is a process event handler, i.e. it handles
changes that occur during the process execution. These changes may include process status changes or
errors that happen during execution. Application of this pattern in the workflow management system
is not a straight object oriented observer pattern as described in [Gamma et al.], because it leverages
J2EE standards such as Java Messaging System (for asynchronous message exchange and queuing) and
Message Driven Beans (for processing of those messages).

Factory Method Another very useful pattern is the Factory Method. It helps to defer class instantia-
tion until runtime - before that moment, application doesn’t even know that those classes exist. Typical
implementations of this pattern involve mapping between text strings and Java classes. Sometimes that
mapping is done inside Java structures like HashMap or Hashtable, and sometimes it is extracted out of
code to external text file. The latter solution has been applied in this project. It is used for instantiating
classes that implement the Data Access Objects pattern (explained below) containing persistence logic
of processes and resources. This implementation slightly differs from the typical one - it leverages Java
5.0 generics feature, making Factory even more robust, type-safe and hence, less error-prone.

Singleton During application design or implementation, often arises the need for an object with only
one instance, and with single point of access. Objects satisfying those requirements are called, naturally
enough, singletons. Their most common use is to act as a factory producing particular objects or perform
some logic related to lookups of remote or local EJB objects in the JNDI directory. Application of
singleton pattern in this system represents the latter case. Although true singleton pattern cannot be

72 Description of applied design patterns

achieved in J2EE environment due to distribution and usage of multiple virtual machines, singleton
implementation developed in this system is satisfiable and meets all the requirements.

Command There are times that designers or developers don’t know how particular classes should be-
have, and so they want to defer this decision until late implementation or even after that phase. Moreover,
there may be several classes with different behavior, but conforming to the same interface that is known
at design time, that would be applied interchangeably. This is known as the command design pattern.
One has to declare an interface, and the calling class will invoke methods defined in it. Implementation
of this interface can be even supplied at runtime (provided that appropriate reflection instructions are
executed to load the class). In this project, the command design pattern has been applied to execute
particular activity’s work units as Java class files supplied in the workflow process definition in case of
activities to be carried out automatically. Class implementing mentioned interface is instantiated and
provided to the activity executor component for immediate execution.

Data Access Object This pattern is in fact a special case of the Strategy design pattern, as described in
[Gamma et al.]. It encapsulates all persistence logic in one object, making the service layer independent
from the underlying data storage. If the data store changes, all the developers have to do is reimplement
the DAO interface. Although the underlying database will change in extremely rare cases in the com-
mercial environment, it is good for the design to retain its portability across database platforms. The
developed workflow management solution uses Data Access Objects to deal with persistence logic of
processes and resources. Those objects are persisted to the filesystem in a form of XML documents, but
as has been stated above, design is portable so it can be easily ported to another persistence technology
like relational or object oriented database.

Service Locator Service Locator is not a typical pattern implemented in all Java applications. Its
main goal was to separate code that is used to lookup remote or local objects in the J2EE container
environment. By separating this infrastructure-related code and keeping it only in one, central place,
code is not unnecessarily duplicated and good practices such as code reuse are promoted. It is quite
natural to implement Service Locator as a Singleton-like object (described above). In our project, the
Service Locator pattern is applied to look up Process Manager and Resource Manager EJB components
in the JNDI directory. Now, instead of invoking several methods and performing numerous type casts,
all that needs to be done is encapsulated within one method call.

Session Façade Keeping business logic scattered over several business objects in the EJB tier is not
quite a good practice. Possibly remote client must perform calls to many EJB components (including
CMP or BMP entity beans), then those components call other beans, and so on, and so forth. Inventors
of the Session Façade design pattern advocate centralization of business logic in a few stateless session
beans with coarse-grained interfaces. From this central point of the service layer, local calls to other
beans are delegated. This pattern greatly simplifies development and improves maintainability of archi-
tecture designed this way. The Session Façade has found his place in our workflow project - all business
logic related to manipulating processes and activities is centralized in the Process Manager module.
Similarly, all code that operates on resources has been centralized in the Resource Manager module.

6 Summary

Workflow and BPM systems are without any doubt one of the fastest developing area in today’s soft-
ware engineering world. Numerous companies produce their own ad-hoc platforms, organizations build
standards, and the academic field also comes up with new and innovative workflow solutions.

However, none of the existing concepts, notations or implementations have moved this far towards
flexibility and power, as the approach defined and developed within this work did. The idea that we
came up with is a natural extension of Stack-Based Approach and thus complements Stack-Based Query
Language by adding new functionality dealing with workflows. Being a generic solution by design, and
being built on object-oriented concepts, it isn’t tied to any of existing technologies or business process
notations. This approach deals with some of the problems encountered by traditional workflow systems
and solves them in a bit different way, by using alternative assumptions and through different design
decisions.

First of those common workflow problems is insufficient parallelization of activities being carried
out. Most of the products and notations available on the market assume that every task has to be executed
sequentially, after its predecessor completes. In reality, great majority of processes are carried out in
parallel, and only in special cases, a high level synchronization mechanism is required to define sequence
of activities. This problem is absent in the developed concept, as all the processes and their activities
are inherently parallel. What is more, the mentioned synchronization mechanisms allow designers to
restrict specific order of tasks in a process, as well as form sophisticated pre- and postconditions, in
accordance to which, the appropriate process paths will be selected.

Dynamic process changes is another vital area in the field of workflows, and has also been addressed
in this thesis. By increasing flexibility up to this degree, processes defined in the system can reflect real-
life business processes in more detail, and hence rapidly adapting to changing circumstances. Resolution
to this problem is present in proposed SBA/SBQL extension concept, and thus, also in the Java-based
prototype implementation.

The problem of exceptional situations handling has also been tackled with within this work. Errors
or other abnormal circumstances need to be dealt with in a declarative manner, so that when such event
is encountered, an appropriate process path can be chosen, together with launching special compen-
sation procedure that will leave the system intact, even after serious errors or failures. The developed
SBA and SBQL extensions, together with prototype Java implementation, resolve this issue by letting
process designers or developers to specify process exception handling in an easy way, using clear and
comprehensible notation.

Flexible and dynamic resource allocation, as another recurring issue of workflow systems, is also
supported in the proposed extension. The concept assumes a number of ways to allocate a human
resource (task performer), as well as non-human resources. However, not much emphasis has been put
on this area of developed workflow solution, which leaves an opportunity for more future work on those
concepts.

What has been designed and implemented, is a powerful, flexible and extensible approach to busi-
ness process management. All the goals that were planned, have been achieved. An easy to use, com-
prehensible and yet powerful notation, independent of any particular standardized or ad-hoc graphical
notation, as well as any underlying technology. Nevertheless, there have been many workflow areas
that the author found broader than the scope of this thesis, and hence they have been left out for future
development. Those regions include security and access control, more sophisticated resource manage-
ment that would reflect real-life resources with more fidelity, and advanced compensation mechanisms.
Altogether, this forms foundations for future implementation work, and further development of the con-
cept itself. Basing on well understood, object-oriented principles, the model can be easily modified,
extended and enhanced in multitude of directions.

References

[Subieta] Kazimierz Subieta, Teoria i konstrukcja obiektowych języków zapytań, Warszawa, 2004.

[Aalst] W. van der Aalst, K. van Hee, Workflow Management: Models, Methods and Systems, MIT
Press, 2002.

[Aalst et al.] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Barros, Workflow Patterns, 2003.

[WfMC] Workflow Management Coalition, Workflow Terminology & Glossary, 1999.

[Baeyens] T. Baeyens, The State of Workflow, JBoss inc., 2006.

[Momotko] M. Momotko, Tools for Monitoring Workflow Processes to Support Dynamic Workflow
Changes, PhD thesis, Institute of Computer Science, Polish Academy of Sciences, 2005.

[Gamma et al.] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

[Alur et al.] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition, Prentice Hall, 2003.

A Proposed SBA and SBQL Extensions

A.1 Stack-Based Approach Object Store Extensions

Below is the detailed technical description of proposed Stack-Based Approach extensions, consisting of
object specification in SBA notation, together with definition of what each element is responsible for.
Note that referenced objects (like attributes and resources in the activity definition) are not presented in
descriptions of referencing objects. For clarity purposes, they will be shown in more detail in their own,
separate sections.

ActivityDefinition

〈i1, ActivityDefinition, {〈i2, name, ”string”〉, 〈i3, description, ”string”〉, 〈i4, work,

(. . . SBQLcode . . .)〉, 〈i5, performer, (. . . SBQLcode . . .)〉, 〈i6, attributes, {i7}〉,

〈i8, resources, {i9}〉}〉

name type description
id integer internal, not readable identifier of

the activity definition
ACTIVITY_DEFINITION flag flag indicating that this object is

an activity definition
name string unique, externally readable and

meaningful name of the activity
definition

description string description of the activity defini-
tion

work SBQL Procedure the SBQL procedure that will
be executed for all instances
of this activity definition - in
case of an automatically per-
formed activities, after precondi-
tions have been checked and be-
fore nested activities of this ac-
tivity are launched; this element
constitutes an atomic work unit
in case of automatic activity, but
it can consist of many procedure
calls nested hierarchically (eg.
perform some business logic, call
external systems or make opera-
tions on workflow data)

76 Stack-Based Approach Object Store Extensions

(continued)
performer SBQL query performer who will perform ac-

tivities with this definition – may
be specified in numerous ways,
eg. depending on role, qualifi-
cations or other properties; this
attribute is used as a definition
for eligible performers - actual
resource that will be assigned to
perform particular task will be
determined dynamically at run-
time, using this query

attributes &Attribute [0..*] collection of attribute definitions
that describe particular activity
definition; attributes also hold
data that is related to activities
and can be accessed from within
other activities of the process

resources &ResourceDefinition [0..*] non-human resources needed to
complete particular activity; ac-
tivity definition can for example
contain 2 references to resource
definitions - first one would con-
tain information that 100 sheets
of paper are needed, and the sec-
ond one, that 1 conference room
is required; at runtime, those
resources would be looked up
in the available resources’ pool
and locked for the time of ac-
tivity execution; after the activ-
ity has completed, all resources
would be returned to the pool,
so that other activities could al-
locate them

Stack-Based Approach Object Store Extensions 77

Activity

〈i1, Activity, {〈i2, name, ”string”〉, 〈i3, description, ”string”〉, 〈i4, definition, i123〉,

〈i5, preconditions, (...SBQLcode...)〉, 〈i6, postconditions, (...SBQLcode...)〉,

〈i7, processes, {i223, i224, i230}〉, 〈i8, followingActivities, {i400, i401}〉,

〈i9, precedingActivities, {i398, i397}〉, 〈i10, performer, i686〉,

〈i11, resources, {i789, i800}〉, 〈i12, attributes, {i900, i901}〉, 〈i13, startDate, 2006−12−11T11 : 23 : 43〉,

〈i14, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i15, status, (...SBQLcode...)〉,

〈i16, instances, (...SBQLcode...)〉, 〈i17, errors, {〈i345, error, ”errormessage”〉}〉

name type description
id integer internal, not readable identifier of

the activity
ACTIVITY flag flag indicating that this object is

an activity
name string unique, readable and meaningful

name of the activity
description string description of the activity
definition &ActivityDefinition definition of the instantiated ac-

tivity
preconditions SBQL query an SBQL query that returns true,

if the conditions have been sat-
isfied, or otherwise false; there
can be many SBQL queries (for
many preconditions) connected
with logical operators; if spec-
ified so, workflow management
system would have to wait until
particular conditions are satisfied
(eg. invoice from other company
is received)

postconditions SBQL query same as above, but checked at the
end of activity execution

processes &ProcessDefinition [0..*] nested subprocesses that are to
be executed within this activity;
these processes can contain ar-
bitrary number of theoretically
infinitely nested processes that
have already been defined, stored
in the system, and can be easily
plugged into new processes at de-
sign time

78 Stack-Based Approach Object Store Extensions

(continued)
followingActivities &Activity [0..*] collection of activities that will

be executed after the current one
completes; if no conditions are
specified in the following activ-
ities, they will all be executed
simultaneously, if only available
resources suffice; simple or more
advanced routing constructs can
be modeled by using precondi-
tions in each of the following ac-
tivities

precedingActivities &Activity [0..*] collection of activities that have
already been executed prior to
execution of the current activity;
useful when one wants to refer
to data contained in attributes of
the preceding activities or check
those activities’ statuses

performer &Performer reference to object of class Per-
former – already allocated re-
source as a result of executing
query defined in the performer
attribute of this activity’s def-
inition; external systems using
this workflow management sys-
tem can for example query all
tasks for presence of given per-
former - this will create list of
particular employee’s activities
(the notion of worklist)

resources &Resource [0..*] references to resources required
and allocated by this activity; re-
sources allocated by one activ-
ity, cannot be reallocated by an-
other one, unless they are first
deallocated as a consequence of
activity (that previously allocated
given resource) completion or
failure

attributes &Attribute [0..*] collection of current activity’s at-
tributes together with their values
- all the activity-scoped data held
and transfered within the work-
flow processes is kept in this el-
ement

Stack-Based Approach Object Store Extensions 79

(continued)
startDate datetime current activity’s start time and

date
finishDate datetime current activity’s end time and

date
status SBQL query execution status of current activ-

ity – may have several possible
values ("completed", "deferred",
"error" or other), or may return
one of above values calculated by
a query

instances SBQL query query that returns number of in-
stances that this particular activ-
ity is required to run - may be
supplied in the form of a number
or for example query that returns
value of an activity or process at-
tribute

errors string [0..*] collection of errors that have oc-
curred during execution of the
current activity; this collection
is checked after the process
completion, and the appropriate
exception handlers (compensa-
tion procedures) are executed, if
specified

80 Stack-Based Approach Object Store Extensions

ProcessDefinition

〈i1, P rocessDefinition, {〈i2, activities, {i81, i82, i83}〉, 〈i3, attributes, {i91, i92, i93}〉,

〈i4, resourceAllocation, ”allocation”〉, 〈i5, compensation, (...SBQLcode...)〉}〉

name type description
id integer internal and not readable identi-

fier of the process definition
PROCESS_DEFINITION flag flag indicating that this object is

a process definition
activities &Activity [0..*] activities to be carried out dur-

ing process execution; all activ-
ities from this collection are ex-
ecuted simultaneously; each of
them can contain followingAc-
tivities that will be executed after
the first ones are completed

attributes &Attribute [0..*] collection of all possible at-
tributes for this particular process
definition (without values or with
default values)

resourceAllocation string method for allocating resources
- can be set to several val-
ues, for example "load_balance",
"case_handling" or "random";
the process manager module
would allocate tasks to perform-
ers basing on the algorithm spec-
ified within this element

compensation SBQL Procedure a fragment of code that will be
executed upon failure of the pro-
cess execution

Stack-Based Approach Object Store Extensions 81

Process

〈i1, P rocess, {〈i2, name, ”string”〉, 〈i3, definition, i4〉, 〈i5, startDate, 2006−12−11T11 : 23 : 43〉,

〈i6, endDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i7, attributes, {i8, i9, i10}〉}〉

name type description
id integer internal and not readable identi-

fier of the process instance
PROCESS flag flag indicating that this object is

a process instance
name string unique name of the process in-

stance
definition &ProcessDefinition reference to the definition of this

process
startDate datetime date and time when the process

has started
endDate datetime date and time when the process

execution ended
attributes &Attribute [0..*] collection of process attributes,

includes values; this element
constitutes process-scoped data
that can be accessed from within
any activity of this process in-
stance

Attribute

〈i1, Attribute, {〈i2, type, type〉, 〈i3, name, ”string”〉, 〈i4, comment, ”string”〉, 〈i5, value, i6〉}〉

name type description
id integer internal and not readable identi-

fier of the attribute
type type type of the attribute variable
name string name of the attribute
comment string additional comment on the at-

tribute
value (any type) value of the attribute

Resource

〈i1, Resource, {〈i2, definition, i3〉, 〈i4, quantity, 123〉}〉

name type description
id integer internal and not readable identi-

fier of the resource
definition &ResourceDefinition reference to definition of this re-

source
quantity real quantity of a particular resource

that is needed

82 Stack-Based Approach Object Store Extensions

ResourceDefinition

〈i1, ResourceDefinition, {〈i2, name, ”string”〉, 〈i4, availableQuantity, 523〉}〉

name type description
id integer internal and not readable identi-

fier of the resource definition
name string reference to definition of this re-

source
availableQuantity real quantity of a particular resource

that is currently available

Example process

In chapter 2 we have written an example process in the extended SBQL notation. The code below,
written in the Stack-Based Approach notation, illustrates results of executing that mentioned code, as it
would be persisted in the data store.

〈i1, P rocessDefinition, {〈i2, activities, {i57}〉, 〈i4, attributes, {i13, i14}〉, 〈i6, resourceAllocation,

”random”〉}〉

〈i7, P rocess, {〈i8, name, ”Insurance Claims Handling”〉, 〈i9, definition, i1〉, 〈i10, startDate,

2006 − 12 − 11T11 : 23 : 43〉, 〈i11, endDate, 2006 − 12 − 14T11 : 32 : 11〉}〉

〈i15, ActivityDefinition, {〈i16, name, ”Register Claim”〉, 〈i17, description, ”Register incoming

insurance claim”〉, 〈i18, performer, (. . . SBQL code . . .)〉}〉

〈i19, ActivityDefinition, {〈i20, name, ”Classify Claim”〉, 〈i21, description, ”Classify whether

the incoming claim is simple or complicated”〉, 〈i22, performer, (. . . SBQL code . . .)〉}〉

〈i23, ActivityDefinition, {〈i24, name, ”Phone Garage”〉, 〈i25, description, ”Phone garage in

order to obtain information about damages”〉, 〈i26, performer, (. . . SBQL code . . .)〉,

〈i27, resources, {i28}〉}〉

〈i29, ActivityDefinition, {〈i30, name, ”Check Insurance”〉, 〈i31, description, ”Check vehicle′s

insurance policy”〉, 〈i32, work, (. . . SBQL code . . .)〉, 〈i33, performer, ”AUTO”〉,

〈i34, attributes, {i35}〉}〉

Stack-Based Approach Object Store Extensions 83

〈i36, ActivityDefinition, {〈i37, name, ”Check History”〉, 〈i38, description, ”Check vehicle′s

history”〉, 〈i39, performer, (. . . SBQL code . . .)〉, 〈i40, attributes, {i41}〉}〉

〈i42, ActivityDefinition, {〈i43, name, ”Decide”〉, 〈i44, description, ”Make decision whether

the claim should be accepted or rejected”〉, 〈i45, performer, (. . . SBQL code . . .)〉}〉

〈i46, ActivityDefinition, {〈i47, name, ”Pay”〉, 〈i48, description, ”Pay money to claim

originator”〉, 〈i49, performer, (. . . SBQL code . . .)〉}〉

〈i50, ActivityDefinition, {〈i51, name, ”Send Letter”〉, 〈i52, description, ”Send letter to the

claim originator”〉, 〈i53, performer, (. . . SBQL code . . .)〉, 〈i54, resources, {i55, i56}〉}〉

〈i57, Activity, {〈i58, name, ”Register Claim”〉, 〈i59, definition, i15〉,

〈i60, preconditions, (...SBQL code...)〉, 〈i61, postconditions, (...SBQL code...)〉,

〈i62, followingActivities, {i68}〉, 〈i64, performer, i300〉,

〈i65, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i66, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i67, status, ”NONE”〉}

〈i68, Activity, {〈i69, name, ”Classify Claim”〉, 〈i70, definition, i19〉,

〈i71, preconditions, (...SBQL code...)〉, 〈i72, postconditions, (...SBQL code...)〉,

〈i73, followingActivities, {i78, i90}〉, 〈i74, precedingActivities, {i57}〉,

〈i75, performer, i300〉, 〈i76, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i77, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i78, status, ”NONE”〉,

〈i78, Activity, {〈i79, name, ”Phone Garage”〉, 〈i80, definition, i23〉,

〈i81, preconditions, (...SBQL code...)〉, 〈i82, postconditions, (...SBQL code...)〉,

〈i83, followingActivities, {i114}〉, 〈i84, precedingActivities, {i68}〉, 〈i85, performer, i301〉,

〈i86, resources, {i365}〉, 〈i87, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i88, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i89, status, ”NONE”〉}〉

〈i90, Activity, {〈i91, name, ”Check Insurance”〉, 〈i92, definition, i29〉,

〈i93, preconditions, (...SBQL code...)〉, 〈i94, postconditions, (...SBQL code...)〉,

84 Stack-Based Approach Object Store Extensions

〈i95, followingActivities, {i102, i114}〉, 〈i96, precedingActivities, {i68}〉, 〈i97, performer, ”AUTO”〉,
〈i98, attributes, {i35}〉, 〈i99, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i100, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i101, status, ”NONE”〉}〉

〈i102, Activity, {〈i103, name, ”Check History”〉, 〈i104, definition, i36〉,
〈i105, preconditions, (...SBQL code...)〉, 〈i106, postconditions, (...SBQL code...)〉,

〈i107, followingActivities, {i78}〉, 〈i108, precedingActivities, {i90}〉, 〈i109, performer, i301〉,
〈i110, attributes, {i41}〉, 〈i111, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i112, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i113, status, ”NONE”〉}〉

〈i114, Activity, {〈i115, name, ”Decide”〉, 〈i116, definition, i42〉,
〈i117, preconditions, (...SBQL code...)〉, 〈i118, postconditions, (...SBQL code...)〉,

〈i119, followingActivities, {i125, i136}〉, 〈i120, precedingActivities, {i78, i90}〉, 〈i121, performer, i302〉,
〈i122, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i123, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i124, status, ”NONE”〉}〉

〈i125, Activity, {〈i126, name, ”Pay”〉, 〈i127, definition, i46〉,
〈i128, preconditions, (...SBQL code...)〉, 〈i129, postconditions, (...SBQL code...)〉,

〈i130, followingActivities, {i136}〉, 〈i131, precedingActivities, {i114}〉, 〈i132, performer, i301〉,
〈i133, startDate, 2006 − 12 − 11T11 : 23 : 43〉,

〈i134, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i135, status, ”NONE”〉}〉

〈i136, Activity, {〈i137, name, ”Send Letter”〉, 〈i138, definition, i50〉,
〈i139, preconditions, (...SBQL code...)〉, 〈i140, postconditions, (...SBQL code...)〉,

〈i141, followingActivities, {}〉, 〈i142, precedingActivities, {i114, i125}〉, 〈i143, performer, i301〉,
〈i144, resources, {i401, i402}〉, 〈i145, startDate, 2006 − 12 − 11T11 : 23 : 43〉,
〈i146, finishDate, 2006 − 12 − 11T11 : 32 : 11〉, 〈i147, status, ”NONE”〉}〉

〈i13, Attribute, {〈i148, name, ”classification”〉, 〈i149, type, string〉,
〈i150, comment, ”Classification whether the claim is simple or complex”〉}

〈i14, Attribute, {〈i151, name, ”decision”〉, 〈i152, type, boolean〉,
〈i153, comment, ”Decision whether the claim should be accepted or rejected”〉}

〈i35, Attribute, {〈i154, name, ”policiesFound”〉, 〈i155, type, boolean〉,
〈i156, comment, ”V ehicle insurance policies that have been found in the database”〉}

〈i41, Attribute, {〈i157, name, ”vehicleHistory”〉, 〈i157, type, string〉,
〈i158, comment, ”Insurance history of the vehicle”〉}

Stack-Based Query Language Extensions 85

A.2 Stack-Based Query Language Extensions

The proposed Stack-Based Query Language extension, as described in previous chapters, involves nu-
merous new language constructs for creating and manipulating workflow processes and activities. All
of them are described in this section, by using recursive descent in the EBNF notation. Two of the
non-terminals, query and identifier, have not been further described, as they are self-explanatory
and easy to understand. The query denotes any valid SBQL code, whereas identifier means any
legal SBQL identifier.

create_activity_definition ::= "{" name [description] [work] performer [attributes]
[subprocesses] [resources] "}" "as" identifier ;

create_activity ::= "create activity" "{" name [description] definition
[preconditions] [postconditions]
[preceding_activities] [following_activities]
[instances] "}" "as" identifier ;

create_process_definition ::= "create process definition" "{" name [allocation]
activities [attributes] [compensation] "}" "as"
identifier ;

create_process_instance ::= "create process" "{" name definition "}" "as"
identifier ;

launch_process ::= "launch" " " identifier ;
cancel_process ::= "cancel" " " identifier ;

name ::= "name" " " string ;
description ::= "description" " " string ;
performer ::= "performer" "{" query "}" ;
attributes ::= "attributes" "{" {identifier : type} ";" "}" ;
subprocesses ::= "subprocesses" "{" "bag" "{" {identifier} "}" "}" ;
resources ::= "resources" "{" query "}" ;
definition ::= "definition" identifier ;
preconditions ::= "preconditions" "{" condition "}" ;
condition ::= query | "waitfor" "{" query "}" [query] ;
postconditions ::= "postconditions" "{" condition "}" ;
activities ::= "activities" "{" "bag" "{" {identifier} "}" "}" ;
preceding_activities ::= "preceding_activities" "{" activities "}" ;
following_activities ::= "following_activities" "{" [activities] "}" ;
instances ::= "instances" "{" query "}" ;
allocation ::= "allocation" " " string ;
compensation ::= "compensation" "{" query "}" ;

Additionally, there are several reserved words that can be used when querying the database for
information related to workflow processes. Naming convention which they represent is consistent with
the entity names, described earlier in this appendix. The words are listed below.

Process
ProcessDefinition
Activity
ActivityDefinition
Resource
ResourceDefinition

B Workflow process schema documentation

process-def Complex type Process definition specification
id xs:string Unique identifier of the process definition
activities activity[1..*] Activities that constitute this process
attributes attribute-def[0..*] Definition of process-scoped attributes
resource-allocation xs:string Specification of resources allocation algo-

rithm
exception-handlers exception-handler Procedures defined declaratively that handle

exceptional situations
process Complex type Process instance specification
id xs:string Unique identifier of the process instance
definition process-def Definition, according to which process should

be instantiated
name xs:string Readable and meaningful name of the process

instance
start-date xs:dateTime Date and time when the process execution

started
end-date xs:dateTime Date and time when the process execution

ended
attributes attribute[0..*] Process scoped attributes with their values
activity-def Complex type Activity definition specification
id xs:string Unique identifier of the activity definition
name xs:string Readable and meaningful name of the activity

definition
description xs:string Additional description of the activity defini-

tion written in natural language
class xs:string Java class that will be instantiated and run

upon execution of activities defined accord-
ing to this definition

performer performer Specification of performer allocation rules
that will be evaluated during process execu-
tion, and used to allocate relevant performer
to an activity

attributes attribute-def[0..*] Definition of activity-scoped attributes
resources resource Specification of resources required to carry

out an activity; these allocation rules will be
evaluated during process execution, and ap-
propriate resources will be allocated to an ac-
tivity

Workflow process schema documentation 87

activity Complex type Activity instance specification
id xs:string Unique identifier of the activity instance
name xs:string Readable and meaningful name of the activity

instance
description xs:string Additional description of the activity defini-

tion written in natural language
definition activity-def Definition, according to which activity should

be instantiated
preconditions condition[0..*] Specification of conditions that will be evalu-

ated before activity execution - when success-
ful, activity guarded by this condition will be
attained

postconditions condition[0..*] Specification of conditions that will be eval-
uated after activity execution - when success-
ful, process execution will be able to proceed
to another activities

nested-processes xs:string[0..*] Enables inclusion of subprocesses that will be
executed within this activity

following-activities activity[0..*] Specifies which activities will have to be en-
acted after the current one completes

preceding-activities xs:string[0..*] Specifies activities that are immediately pre-
ceding to the current one. To avoid cyclic ref-
erences, this element has been simplified to
contain only identifiers of activity instances

performer xs:string Contains identifier of specific performer,
evaluated by the resource management mod-
ule, according to performer specification con-
tained in the activity definition

resources resource[0..*] Contains identifiers of allocated resources to-
gether with each resource’s needed quantity;
calculated during process execution by the re-
source management module

attributes attribute[0..*] Activity scoped attributes with their values
start-date xs:dateTime Date and time when the activity execution

started
finish-date xs:dateTime Date and time when the activity execution fin-

ished
status xs:string Status of the current activity, set by the

process management module (eg. "COM-
PLETED", "WAITING", etc.)

errors error[0..*] Sequence of errors that were encountered dur-
ing execution of current activity

instances instances Specification of the number (or method to
evaluate the number) of instances that this ac-
tivity is required to run

88 Workflow process schema documentation

resource Complex type Resource specification
id xs:string Unique identifier of the resource
name xs:string Readable and meaningful name of the re-

source
quantity xs:double Amount of the resource that is available or re-

quired (depending on context)
performer Complex type Specifies performer allocation method (only

one from the list below)
roles xs:string[1..*] Specifies list of roles, whose users are eligible

for allocation to particular task
direct xs:string Specifies identifier of single performer, who

will receive the task
capabilities anonymous type[1..*] Defines capabilities, according to which the

performer will be selected; each capability
consists of elements capability-name,
capability-value, and
capability-relation, each of type
xs:string

attribute xs:string Specifies attribute that would contain name of
the particular performer

condition Complex type Specifies condition according to time events,
attribute values, activity statuses, or basing
on results of custom Java code execution;
contains attribute wait of type xs:boolean,
which specifies if the workflow engine needs
to wait for this condition to be satisfied

time anonymous type Condition based on time events; han-
dles two kinds of events: delay
(xs:positiveInteger) or absolute
(xs:dateTime)

attribute anonymous type Condition based on attribute’s value; con-
tains the following subelements: name (for
attribute’s name), value (value to be com-
pared with actual attribute’s value), and
relation (to specify relation between ac-
tual and expected attribute’s value)

status anonymous type Condition based on activity’s status; con-
tains two subelements: activity (denotes
which activity’s status must be checked), and
value (specifies what is the expected at-
tribute’s status)

completed-preceding xs:integer Condition based on the number of completed
preceding activities

code xs:string Custom condition check, written in Java and
supplied as a class name implementing the
CodeCondition interface

Workflow process schema documentation 89

or anonymous type Collection of conditions joint together with
logical OR operation

and anonymous type Collection of conditions joint together with
logical AND operation

xor anonymous type Collection of conditions joint together with
logical XOR (exclusive or) operation

available-resources Complex type Specification of resources that are available
for allocation

users user[0..*] Collection of performers that are available for
task allocation

resources resource[0..*] Collection of resources that are available to
be allocated to activities

roles role[0..*] Collection of roles that are present in the sys-
tem and may contain users assigned to them

role Complex type Represents role, can have many users as-
signed

id xs:string Unique identifier of the role
name xs:string Meaningful and readable name of the role
user Complex type Represents user
id xs:string Unique identifier of the user
name xs:string User’s name
surname xs:string User’s surname
email xs:string User’s email address
address xs:string User’s mailing address
capabilities anonymous type[0..*] Collection of user’s capabilities,

each of which consists of two ele-
ments: capability-name, and
capability-value

roles role Collection of roles, to which the user belongs
attribute Complex type Specifies data container together with its

value visible in particular scope
definition attribute-def Definition of this attribute
value xs:string Value of this attribute
attribute-def Complex type Specifies definition of an attribute, common

to all attributes that reference it
name xs:string Defines name for an attribute
class xs:string Specifies Java class name for the attribute’s

value
comment xs:string Additional comment, describing responsibil-

ity of attributes sharing this definition

90 Workflow process schema documentation

exception-handler Complex type Defines handling rules for exceptions that oc-
curred during process execution

exception xs:string Java class name representing type of the
encountered exception; usually subclass of
java.lang.Throwable

handler xs:string Java handler class, which will be launched
upon execution of relevant compensation pro-
cedure

error Complex type Specification of a problem that was encoun-
tered during process execution

class xs:string Denotes class of the exception that has been
thrown during process execution

message xs:string Message contained within the thrown excep-
tion object

stacktrace xs:string Stack trace of the thrown exception; for log-
ging or debugging purposes

instances Complex type Specifies number of instances for particular
activity to be executed; may contain only one
element: attribute or number

attribute xs:string Specifies which attribute contains number of
instances for particular activity to execute
(evaluation deferred until runtime)

number xs:integer Contains a specific number of instances for an
activity to run (specified at design time)

C API documentation for the process and resource management mod-
ules

C.1 Process Manager

• public void createProcessInstance(Process p) - Creates a new process instance
in the data store according to supplied Process object. Such instance may be launched and fur-
ther handled by the process management engine.

• public void launchProcess(Process p) - Launches an already created process in-
stance, which is provided as a parameter.

• public void launchProcess(String processId) - Launches an existing process
instance. Unlike the previous method, it requires only the process identifier to be specified.

• public void launchActivity(Activity activity, Process enclosingProcess)
- Starts execution of specified activity within the specified process instance. This method, unlike
the preceding two, is not intended to be externally invoked, and thus is not exposed in the compo-
nent’s remote interface.

• public void modifyActivity(Activity a, Process enclosingProcess) -
Updates an existing activity with data contained in the specified activity object, and which exists
inside the specified process instance.

• public void completeActivity(Activity act, Process enclosingProcess)
- Sets activity’s status to "COMPLETED", so that the process could proceed with execution. Use-
ful when task is not automatically carried out by the system, but requires some human actions to
be taken (eg. sending letter by mail).

• public Activity findActivity(String id, Process enclosingProcess)
- Searches for an activity within specified process instance, and returns single activity object.

• public String getProcessAttribute(String name, Process process) - Re-
turns value of process-scoped variable by the specified attribute name.

• public void setProcessAttribute(String name, String value, Process
process) - Sets value of process-scoped attribute, according to specified process instance and
variable name.

• public String getActivityAttribute(String name, Activity activity)
- Returns value of activity-scoped variable by the specified attribute name.

• public void setActivityAttribute(String name, String value, Activity
activity) - Sets value of activity-scoped attribute, according to specified activity instance and
variable name.

• public void createActivityAttribute(String name, String type, String
comment, Activity activity) - Creates attribute in the activity scope, so that it can be
written and read later during process execution. Such specification must include name, type and
comment of the attribute for integrity checking purpose.

92 Resource Manager

• public void createProcessAttribute(String name, String type, String
comment, Process process) - Creates attribute in the process scope, so that it can be
written and read later during process execution. Such specification must include name, type and
comment of the attribute for integrity checking purpose.

• public Process getProcess(String processId) - Returns process instance ob-
ject by the supplied unique process identifier.

C.2 Resource Manager

• public void allocateResources(Activity activity,
Process enclosingProcess) throws InsufficientResourcesException - Al-
locates resources required to attain particular task to the specified activity object within supplied
process instance. This method is used internally by the process management module, and hence
should not be invoked externally. It is not exposed in the component’s remote interface.

• public void allocatePerformer(Process process, Activity activity,
String allocation) throws InsufficientResourcesException - Allocates performer required
to attain particular task to the specified activity object within supplied process instance, and in ac-
cordance to specified allocation algorithm (random, round robin, load balance, etc.). This method
is used internally by the process management module, and hence should not be invoked externally.
It is not exposed in the component’s remote interface.

• public void createUser(User user) - Creates user object in the underlying data
store. Such created user can be allocated to tasks as a performer.

• public void removeUser(String login) - Finds user by his or her login and re-
moves them from the data store.

• public void updateUser(User user) - Modifies existing user information with those
contained in the supplied object.

• public User getUser(String login) - Retrieves single user object from the data store
and returns it to the caller.

• public Collection<User> getAllUsers() - Retrieves all users that exist in the data
store and returns them in the form of collection.

• public void createRole(Role role) - Creates role object in the underlying data store.
Users existing in the system can then be added to such created role.

• public void removeRole(String roleName) - Finds role by its name and removes
it from the data store.

• public void updateRole(Role role) - Modifies existing role information with those
contained in the supplied role object.

• public Role getRole(String roleName) - Retrieves single role object from the data
store and returns it to the caller.

• public Collection<Role> getAllRoles() - Retrieves all roles that exist in the data
store and returns them in the form of collection.

Resource Manager 93

• public void createResource(Resource resource) - Creates resource object in
the underlying data store. Created resources can then be allocated to activities.

• public void removeResource(String resourceName) - Finds resource by its name
and removes it from the data store.

• public void updateResource(Resource resource) - Modifies existing resource
information with those contained in the supplied role object.

• public Resource getResource(String resourceName) - Retrieves single resource
object from the data store and returns it to the caller.

• public Collection<Resource> getAllResources() - Retrieves all resources that
exist in the data store and returns them in the form of collection.

• public void deallocateResources(Activity activity) - Deallocates all re-
sources from the specified activity, so that they become eligible for reuse. This method, like
some of the previously described ones, is not intended for external use, but is called from within
the process management module. Also, it is not exposed in the component’s remote interface.

