
Prototype of Object-Oriented Declarative Workflows
∗∗∗∗

Marcin Dąbrowski1, Michał Drabik1, Mariusz Trzaska1, Kazimierz Subieta1,2

1) Polish-Japanese Institute of Information Technology

{mdabrowski, mdrabik, mtrzaska, subieta}@pjwstk.edu.pl
2) Institute of Computer Science Polish Academy of Sciences

Abstract. While in the traditional workflow processes the control flow is determined
statically within process definitions, in declarative workflow processes the control flow is
dynamic and implicit, determined by conditions that occur in the workflow data and the
service environment. The environment consists of so-called active objects, which play a
double role. On the one hand, they are persistent data structures that can be queried and
managed according to the syntax and semantics of a query language. On the other hand,
active objects possess active parts that are executable and represent workflow processes
or tasks. The approach is motivated by features that are desirable in complex and less
regular business processes: (1) the possibility of dynamic changes of process instances
during their run, (2) mass parallelism of process instances and their components and (3)
shifting the availability of resources that workflows deal with on the primary plan as a
mean for triggering instances of process tasks. The paper presents the prototype of an
object-oriented declarative workflows on a comprehensive example with roots in a real
business case.

Keywords: workflow, object-oriented, declarative, query language, active object,
dynamic workflow change, ODRA, SBQL

1. Introduction

The workflow technology is a well developed domain with many commercial successes,
which include such standards as BPEL [2], BPMN [13] and XPDL [21]. Nevertheless, there
are still problems that undermine applications of workflow management systems in important
business domains. We mention the following features that are insufficiently developed in
popular workflow systems:
• Dynamic changes in workflow instances during their run. For complex workflow processes

it may happen that their behavior must altered without altering their definitions. Dynamic
workflow changes are the subject of many research papers, see e.g. [1, 5, 6, 9, 10,14,
15,16]. Although valuable results are achieved (especially concerning workflow patterns)
the problem in general still remains unsolved.

• Parallel execution of tasks within workflow processes. Currently, the parallelism is
achieved by explicitly programmed splits and joins (AND, OR, XOR). In many cases such
a parallelism is insufficient, for instance, when a process is to be split into many
subprocesses, but their number is unknown in advance. For instance, a workflow is

∗ This research is supported by the Polish Ministry of Science and Higher Education through the grant N

N516 3755 34.

2

processing a package of documents, processing of a document needs a parallel subprocess,
but the number of documents within packages varies.

• Aborting a process or some of its parts. Currently, such situations are handled manually,
with possibilities of inconsistencies and non-optimal human action.

• Resource management. In currently developed workflows the work control flow (a la Petri
net) is on the primary plan and the resources (people, money, time, work power,
equipment, infrastructure, offices, vehicles, etc.) are secondary and sometimes not taken
into account at all. This is unnatural for workflow processes because just availability,
unavailability, planning and anticipating required resources are the main factors that
should determine the process control flow.

• Tracking and monitoring. In current workflows tracking and monitoring of processes is
done by some specialized predefined tools with limited functionality. However, tracking
and monitoring should concerns the entire workflow environment and all running process
instances, including databases that support workflows, the state of resources, anticipation
of availability of resources, etc. For this reason the core for tracking and monitoring should
be a query language (such as BPQL [11]) with the full algorithmic power rather than
predefined tools.

• Parallel execution of workflow instances and their parts on many servers (hundreds or
thousands).

• Transaction processing. Classical implementations based on ACID properties and
2PC/3PC protocols are insufficient for workflows. Business processes cannot be reversed,
hence the attitude to transaction aborting should be changed. For various reasons (e.g.
long transactions, priorities, performance) the attitude to the transaction isolation should be
changed too. Moreover, if process instances can be changed during their run by many
independent agents, then the process instances and their parts should be also the subject of
the transaction discipline.

In the project funded by the Polish Ministry of Science and Higher Education we have
investigated a new workflow paradigm that has the potential to overcome the above
difficulties. We assumed that workflow instances can be changed during their run, hence they
should possess a double nature. On the one side they are to be executable processes. On the
other side, they should be considered database structures that are described by some
conceptual schema and can be queries and manipulated as usual (nested) database objects.

The second assumption was inherent parallelism of all workflow processes and their parts.
We avoid explicit splits and joins. Instead, we assume synchronization of parallel processes by
special constructs of a query language. In this way our workflow instances remind PERT
(Program Evaluation and Review Technique) networks rather than Petri nets. PERT naturally
describes dependencies between tasks within non-computerized human activities and can be
formalized using the object-oriented approach. Such a workflow system we describe as
“declarative”, because the control flow is not determined explicitly, but through declarative
queries. Sequences of tasks can be supported by tasks’ states and conditions on the states.

The third assumption is shifting the resource management on the primary plan. Resources
(available, planned, anticipated) are reflected in the database. The control flow of process
instances can be determined by conditions addressing resources.

In this way we came to the idea of active objects, which have the mentioned above double
nature. Active objects are persistent data structures that are described by a database schema
and can be queried and manipulated according to the syntax and semantics of a query
language (in this role SBQL [19, 20]). On the other hand, active objects possess active
(executable) parts. We distinguish four kinds of such active parts: firecondition, execution

3

code, endcondition and endcode (in this role SBQL too). An active object waits for execution
until the time when its firecondition becomes true. After that, the object’s execution code is
executed, and all its active sub-objects are put into the waiting-for-execution state (and
perhaps executed if their fireconditions become true). Execution of the execution code of a
given active object is terminated when either all the actions are completed (including active
sub-objects) or its endcondition becomes true. After fulfillment of an endcondition some
actions might be necessary (e.g. aborting transactions), thus an optional endcode. Each active
object is an independent unit that can be manipulated by SBQL functionalities (updated,
deleted, etc.). Active objects can be nested. In this way they can represent workflow processes,
their tasks, subtasks, etc. Active parts can also be updated; their parsing, type checking,
optimization and compilation are performed on-the-fly. Bindings are mostly dynamic.

The widely recognized paper devoted to dynamic workflow changes is [14]. It presents
some framework for formalizing process graphs and updating operations addressing such a
graph. There are very valuable observations concerning the necessity of dynamic workflow
changes for real business processes and the necessity of strong discipline within the changes to
avoid violation the consistency of the processes. Numerous authors follow the ideas of this
paper (a more complete citation list is presented in [3]). The fundamental difference of our
approach is that we do not determine explicitly the process control flow graph. It is on the
secondary plan, determined dynamically and implicitly by fireconditions and endconditions.
In majority of cases the control flow graph can be different depending on a runtime state of the
workflow, database and computer environment. The problem of the necessity of various
control flow graphs for the same business process is one of the motivations for the research
presented in [14], but it is not easy to see how such a feature can be achieved within the
proposed formal workflow model. In our case the feature is an inherent property of the idea.

The primary plan of declarative workflows deals with a database schema that describes
executable data structures representing the processes, thus by definition enabling all updating
operations that are provided within the assumed programming language SBQL. To restrict
undesirable changes that may violate the consistency of processes we can use the semi-strong
typing system [18] that is implemented for SBQL. This of course may not be enough for more
sophisticated situations. For this goal we plan to implement facilities that are well-know from
relational systems, such as user rights, integrity constraints, business rules and triggers.

Our active objects remain agents considered within the agent-oriented research school.
However, we avoid to use this association and terminology because.

The detailed description of the project assumptions and preliminary results from the
prototype [7] are presented in [3]. In [4] we describe in detail the concept of active object and
related issues. To check the concept we have implemented three different prototypes. The first
prototype [8] was focused on the orchestration of Web Services. After this experience we
concluded that not all goals from the mentioned above are addressed. The second prototype
[7] was based on Web Services too and on the ODRA infrastructure (objects, queries), but it
was still limited. This paper is the first description of the third prototype [17], most advanced
and with no previous tradeoffs concerning the new idea and current workflow technologies.
The prototype is still a proof-of-a-concept rather a usable tool. More research and financial
support is necessary to turn it into a product.

The rest of the paper is organized as follows. Section 2 presents basic assumptions and the
architecture of the prototype. Section 3 presents how dynamic instance modifications can be
performed. The presentation is based on a real example of a workflow that was taken from the
experience in developing a bank system supporting credit processes. Section 4 concludes.

4

2. Prototype of Object-Oriented Declarative Workflow

Fig.1. Architecture of the prototype

The prototype [17] is built upon the ODRA system [12] and a Web-based application for
manipulating prototype functionalities. The Web part uses the Groovy and Grails
technologies. A workflow server part is written in Java. Fig.1 presents the overall prototype
architecture.

The prototype can be tested using a Web application called SBQL4Workflow, Fig.2. It
allows for all administrative tasks like creating process definitions, manipulating them,
instating processes, freezing parts of a running workflow and more. A GUI generation module
is based on the core Grails framework technology called GSP (Groovy Server Pages). It is
similar to JSP (Java Server Pages). A client side is equipped with advanced AJAX controls to
allow dynamic loading of a process tree and manipulating workflow objects minimizing the
need to reload web pages. The SBQL code editor with syntax highlighting that is included into
GUI makes the work with workflows much easier.

The ProcessMonitor is a Java application that can be run as a separate thread on a separate
machine. It periodically checks (basing on timeouts) each ProcessInstance. Then, according to
the values retrieved from condition codes, the ProcessMonitor executes the execution code of
the process.

The prototype is build using the standard three layer approach. A middle layer consists of
the Application Logic and ODRA Wrapper. The corresponding API allows for work with
workflow objects. It is used not only by GUI and the ProcessMonitor but can be used by any
Java program, so writing a different client application is possible. The ODRA Wrapper is a
wrapper between the JOBC library that is used to access the ODRA DBMS through queries
and Java business objects used by the Application Logic. All workflow data are stored on the
ODRA DBMS []. The database schema is presented in the Fig.3.

5

Fig.2. A screen shot of the SBQL4Workflow process hierarchy

+getAttribute(wartość name)

+setAttribute(wartość name, wartość value)

+globalId

+name

+fireCondition

+execCode

+endCondition

+endCode

-timeout

Process

+
p
a

re
n

t

0..1

+children

*

+getAttribute(wartość name)

+setAttribute(wartość name, wartość value)

+globalId

+name

+fireCondition

+execCode

+endCondition

+endCode

+timeout

+status

+processId

+instanceId

+timeOfLastCheck

ProcessInstance

+
p

a
re

n
t

0..1

+children

*

+value

+name

Attribute+attributes

* +attributes

*

 Fig.3. Workflow database schema

The process objects represent structures created by the workflow programmer. Once a
process is initiated, all data, including the data of sub-processes, are copied to the
corresponding ProcessInstance objects. The Parent-Children bidirectional pointer, combined
with other SBQL query operators, gives a great flexibility in expressing conditions and codes.
For instance:
• Find all my children (the code is written with regard to one particular Process).
• Find my parent.

6

• Find a process with a given status.
• Find a process with a given name.

These constructs can be easily combined for more complex search, for instance:
• Find a child that has a certain name and status.

• Check if all my children have the status ‘Finished’.

• Find my “brother” (using parent.children).
• Find all my “nephews” (using parent.children.children).

To allow processes to store ad-hoc additional data we have provided the Attribute class
with a set of methods in the Process and ProcessInstance classes addressing attributes. The
attributes can be easily used to control the flow (when the conditions are based on them) and
allow communication between the processes (as one Process can query another Process
attributes and change their values).

getAttribute('contractSigned')='true'

The code example presents the access to the attribute named ‘contractSigned’.
setAttribute('mailSent'; sendMail('foo@bar.com'; 'M ail content'))

The code sends an email and stores the result (success or failure) as a process attribute.

3. Dynamic Instance Modifications

After creating a process instance for any business reason it can be the subject of changes
(without changing the corresponding process definition). Changes can be performed after
launching an instance. Changes can also concern process definitions and this case is rather
typical for all workflow systems. Our prototype has the following options concerning changes
within workflows:
• Editing and modifying process definitions;
• Instantiating process instances according to the definitions;
• Editing and modifying a process instance by editing its core attributes such as name, fire

condition, end condition, execution code, end code, etc.;
• Running any SBQL program (having updates, inserts, deletions, etc.) in order to

manipulate the entire workflow environment, including nested active objects representing
processes, a resource database and any other persistent or volatile objects that are available
within the environment.. The programs include SBQL queries as expressions.
Changing a process instance may require further changes of other instances to ensure

consistency of the corresponding business process. Our prototype offers much flexibility in
controlling process instances without altering other instances, mainly by preparing more
generic fireconditions and endcondition that are insensitive to some changes of active objects.
For instance, an endcondition can test completion of all corresponding sub-processes with the
use of a universal quantifier. In many cases, however, altering a process instance may require
some actions on other instances. These actions can be nested within a transaction.

To demonstrate the possibility of dynamic instance modification we have created a
comprehensive example of real business processes concerning issuing and granting bank
credits for customers. The structure (schema) of the process presented in Fig.4. All presented
SBQL codes are tested on the prototype.

children where name = 'foo' and status = ProcessSta tus.FINISHED

exists(children where status = ProcessStatus.FINISH ED)

7

”Bank credit” workflow instance initial structure

Additional resources objects

Fig.4. A bank credit process hierarchy and resource objects schemas

Example 1. It demonstrates how to insert a new process into a workflow instance structure,
without the need of changing the already working process instances details.

Fig.5. Adding a „New account money transfer” process.
Letters in brackets correspond to status of a process instance: FINISHED, ACTIVE.

Assume a bank credit process in progress. At the end of it the money that the customer has
requested is transferred to his/her account. However after the transfer the customer has
decided to change the target account. In this situation we can correct the working workflow
instance by inserting an additional subprocesses that will do the requested operation, Fig.5. To
achieve the goal we have to find a workflow instance that should be modified and create a new
process called „New account money transfer” in it. It will have two attributes to store the value
of an old and new account number, named respectively „oldAccountNr”, ” newAccountNr”.

8

After inserting the new process its status is set to „Waiting”. Its firecondition requires
finishing the subprocess „Money transfer”, hence it looks as follows:

exists(parent.children.ProcessInstance where name =
'Money transfer' and status=ProcessStatus.FINISHED)

Fire condition of „New Account money transfer”.

The token parent is a navigation from the new subprocess to its parent process (Ratification),
then children is a navigation to all the parent’s subobjects, from which we select
ProcessInstances with proper conditions.

The purpose of this process is to withdraw the money from the old account and transfer it
into the new one. First a new account should be created:

create Account (ref (Customer where SSN =
parent.parent.ProcessInstance.getAttribute('custome rSSN')) as
owner, getAttribute('newAccountNr') as number, 0 as amount)

Part of execution code that creates new account.

The code creates a new account object with the numbered delivered from the „newAccountNr”
attribute of this process instance. Now we should find out the information about the amount of
money that should be transferred. This information is a part of the „ApplicationForm” object
which is available, so the task will be to find the application form assigned to the current
customer and obtain the „creditAmount” value. To make this value available for further
processing it will be saved as a value of a newly created attribute called „amount”:

(self as p).(p.setAttribute('amount';(ApplicationFo rm where
createdFor.Customer.SSN =
p.parent.parent.ProcessInstance.getAttribute('custo merSSN')).
creditAmount))

Part of execution code that obtains a value of credit amount and creates a new attribute for it.

Now it is possible to withdraw the money from the old account. To do that the right Account
object should be found (the account number is the value of the process instance
„oldAccountNr” attribute), and the value of its „amount” attribute should be decreased by a
value of this process instance „amount” attribute:

(self as p).(((Account where
number=p.getAttribute('oldAccountNr')).(amount:=amo unt-
(p.getAttribute('amount') as a).((integer)a))))

Part of execution code that withdraws the money from the old account.

Then the new Account object should be found (the account number is the value of the process
instance „newAccountNr” attribute) and its „amount” attribute should be increased by the
value of process instance „amount” attribute.

(self as p).(((Account where
number=p.getAttribute('oldAccountNr')).(amount:=amo unt-
(p.getAttribute('amount') as a).((integer)a))))

Part of the execution code that transfers the money into a new account.

9

Before making any changes to a working workflow instance it should be suspended so that the
state before and after applying the change is consistent. Knowing the current state of all
process instances we can assume that a newly created process should start when the „Money
transfer” is finished, and should end when the transfer operation between accounts is
complete. In this case the insertion of a new process instance doesn’t influence any other
process, the construction of „Ratification” end condition ensures that it will not finish before
every of its child finishes.

not exists(children.ProcessInstance where status <>
ProcessStatus.FINISHED)

Part of the „Ratification” end condition.

Example 2. This example demonstrates the possibility of modification of a running workflow
instance structure in order to meet new requirements. It shows how the proper written
execution code can modify behavior of the workflow instance and how the workflow
administrator can influence the behavior.

The customer has decided to increase the credit amount just before signing the contract. In that
case there is no need to restart the whole workflow instance, but only some of the processes.
The activities that the workflow administrator have to perform are the following:
1. Suspend a chosen workflow instance.
2. Add new process instance „Increase credit” (as a child of „Ratification”).
3. Delete process instances that are no longer required („Verification” - child of „Request”,

and „Initial Formal Check” - child of „Analysis”).
4. Change the conditions of other involved process instances to conform to the new structure.
5. Resume workflow instance.

The purpose of the newly created „Increase credit” process instance is to change the
„creditAmount” attribute of the „ApplicationForm” object associated with the customer.

(self as p).(ApplicationForm where createdFor.Custo mer.SSN =
p.parent.parent.ProcessInstance.getAttribute('custo merSSN')).
creditAmount := 200000;;

Part of execution code that increases the credit amount of the application form associated
with the current customer.

It also resets the „Analysis” and „Ratification” process instances in order to perform their
tasks once more. It is done by changing their status to „Waiting” so the process monitor will
include them when checking the candidates to activate. The children of this processes should
also be included with this difference that their status will be changed to „Inactive” .

(parent.parent.children.ProcessInstance where name =
'Analysis').status:=ProcessStatus.WAITING

Part of execution code that changes the status of „Analysis” process instance into WAITING.

((parent.parent.children.ProcessInstance where
name='Analysis').children.ProcessInstance).(status: =ProcessStat
us.INACTIVE)

Part of execution code that changes the status of „Analysis” children into INACTIVE.

10

parent.ProcessInstance.status:=ProcessStatus.WAITIN G

Part of execution code that changes the status of „Ratification” process instance into
WAITING.

(parent.children.ProcessInstance).(status:=ProcessS tatus.
INACTIVE)

Part of execution code that changes the status of „Ratification” children into INACTIVE.

Apart from process instances there are also attributes that values should be set to the previous
state. This concerns the „state” attribute of the „Request” process instance, which holds the
information about the current status of the application form.

parent.parent.ProcessInstance.setAttribute('state'; '')

Part of execution code that sets the value of „Request” „state” attribute to an empty string.

When the „Increase credit” will perform the given task it’s no longer needed in the system
and to ensure that it will act only once, we can create such an end code that will delete it.

(self as p).(delete ProcessInstance where globalId =
p.globalId)

The next step is to get rid of unnecessary process instances such as „Initial formal check” and
„Verification”, because there is no need to repeat them when only the amount of the credit is
changed. After that the conditions of some process instances have to be adjusted. The „Check
client rating” will start as soon as „Analysis” is active instead of start after the „Initial formal
check” finishes.

exists(self.parent.ProcessInstance where status =
ProcessStatus.ACTIVE)

Updated endcondition of „Check client rating”.

All of the statements that concern „Initial formal check” should also be removed from
„Analysis” end condition.

not exists(self.children.ProcessInstance where stat us <>
ProcessStatus.FINISHED)

Updated endcondition of „Analysis”.

The „Ratification” will no longer start after the „Verification” but as soon as the „Analysis”
finishes.

exists(parent.children.Process
Instance where
name='Verification' and
status=ProcessStatus.FINISHED)

exists(parent.children.Process
Instance where name='Analysis'
and
status=ProcessStatus.FINISHED)

Part of the firecondition of „Ratification”
that needs to be changed.

New part of the firecondition of
„Ratification”

11

Now the workflow instance is ready to properly handle the updated application form and
perform suitable tasks in order to complete the request.

(I) - Inactive, (W) - Waiting, (A) - Active,

(F) – Finished

„Bank credit” workflow instance state
before applying changes.

„Bank credit” workflow instance state
after applying changes.

Example 3. It demonstrates how to apply a modification that affects several process instances
of the same kind.

The modifications are to be applied to the „bankLimit” attribute of the „Calculate general
limit” process to 700000. Changing the process definition is straightforward through the GUI
tool. However, changing manually all of the working instances in this way is awkward and can
be error prone. For this reason we create an SBQL statement which will access the workflow
environment and will do the necessary modifications. The statement finds all of the instances
of the „Calculate general limit” subprocess, which has an „Inactive” or „Waiting” status, and
then updates the value of the „bankLimit” attribute to the new value.

(ProcessInstance where name = 'Calculate general li mit' and
(status=ProcessStatus.INACTIVE or
status=ProcessStatus.WAITING)).(setAttribute('bankL imit';'70000
0'))

SBQL statement which updates the „Calculate general limit” „bankLimit” attribute in the
proper workflow instances.

12

Instance 1 Instance 2

Instance 3

Update of the „Calculate general limit” „bankLimit” attribute will only apply to the instance
number one and two.

Example 4. It demonstrates how the working process instance can dynamically create new
process instances.

The commonly considered case in a process definition with parallel subprocesses is that a
process instance is to be split into a fixed number of subprocesses. In many business situations
the case leads to severe limitations, because the number of the subprocesses is known only
during the execution of the instance. In such a case we should provide an option to create new
subprocess instances dynamically, within the execution code of the process instance. To show
this possibility we consider example where there is a need to send an e-mail with some
information to the customer. During filling a request form a customer can provide some
alternative e-mail addresses and we want to ensure that our e-mail will be delivered to all of
them. The process responsible for the contact with the customer is „Information for customer”
so we will modify it to provide required functionality. During the execution of this process
instance it will create as many children process instances sending e-mails as required.

„Information for customer” process
instance before running its execution code.

„Information for customer” process
instance after running its execution code.

The execution code of the „Information for customer” creates a process instance for each of an
e-mail address of a current customer:

(self as p).(((Customer where
SSN=parent.parent.ProcessInstance.getAttribute('cus tomerSSN')).
email as e).(create ProcessInstance(...)))

Shortened execution code of „Information for customer”

13

Then we can populate the execution code for the newly created process instances in such way
that it will send mail for one given address. If an e-mail was sent successfully it will create an
attribute „mailSent” with value 1 to hold the information which will be used later to decide if
the process should end or restart.

setAttribute('mailSent';sendMail('xxx@xxx.xx';'Dear Customer,
Your application should be corrected.'));;

Part of the execution code of a dynamically created process instance that sends e-mail to a
given address and sets an attribute value depending on the result.

if(getAttribute('mailSent')=0) then (status :=
ProcessStatus.WAITING)

Part of the execution code of a dynamically created process instance that restarts it when
sending mail has failed.

4. Conclusion

We have presented the idea of an object-oriented declarative workflow management system
that is especially prepared to achieve an important goal: the possibility of changing process
instances during their run. We have discussed consequences of such a requirement and have
argued that such a revolutionary feature cannot be achieved on the ground of traditional
approaches to workflows based on specification of control flow graphs. Our idea allows to
achieve next important features, such as mass parallelism of processes and flexible resource
management. The idea is supported by the working prototype that shows its feasibility. The
prototype is implemented on the basis of ODRA, an object-oriented distributed DBMS, and
SBQL, a query and programming language designed and implemented for ODRA. In the
paper we present comprehensive examples showing how a declarative workflow can be
defined and how it can be dynamically changed. The examples have shown the feasibility of
the idea of declarative workflows for real business cases.

The prototype is still under development. We are applying for next grants that will allow us
to turn it into a commercial (open source) product. Independently from the ODRA-oriented
project, the idea is being implemented as a proprietary commercial tool for Small and Medium
Enterprises.

Acknowledgements. Our special thanks to Prof. Maria ElŜbieta Orłowska, who originally formulated
the project proposal. We would also like to express our deep gratitude to the numerous developers of the
ODRA system.

5. References

1. W.M.P. van der Aalst. Generic workflow models: How to handle dynamic change and capture
management information? Proc. 4th Intl. Conf. on Cooperative Information Systems (CoopIS'99),
Los Alamitos, CA, 1999

14

2. T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.Klein, F.Leymann, K.Liu, D.Roller,D.Smith,
S.Thatte, I.Trickovic, S.Weerawarana. Business Process Execution Language for Web Services,
Version 1.1. OASIS, 2003.

3. M.Dąbrowski, M.Drabik, P.Habela, K.Subieta. Object-Oriented Declarative Workflow Management
System. Editors of the Institute of Computer Science, Polish Academy of Sciences, ISBN 978-83-
922508-3-8, 2009, 176 pages.
http://www.ipipan.waw.pl/~subieta/SBA_SBQL/articles/ContentAndAbstract.htm

4. M.Dąbrowski, M.Drabik, M.Trzaska, K.Subieta. Dynamic Changes of Workflow Processes.
Submitted to publication, April 2010.

5. C.A.Ellis. K.Keddara, GRozenberg. Dynamic change within workflow systems. Proc. ACM Conf. on
Organisational Computing Systems (COOCS 95)

6. C.A.Ellis. K.Keddara, and J.Wainer. Modelling workflow dynamic changes using time hybrid flow.
In Workflow Management: Net-based Concepts, Models, Techniques and Tools (WFM’98), 98(7),
Computing Science Reports, pp.109-128. Eindhoven University of Technology, 1998

7. A.Juszkiewicz, A.Aksamit, M.Jaworski. Workflow system based on the object-oriented DBMS
ODRA. MSc. Thesis. Polish-Japanese Institute of Information Technology, September 2009 (in
Polish). http://www.ipipan.waw.pl/~subieta/prace%20magisterskie

8. Ł.Korneluk, K.Jasiołek. Web Services choreography based on an object-oriented process model.
MSc. Thesis. Polish-Japanese Institute of Information Technology, September 2009 (in Polish).
http://www.ipipan.waw.pl/~subieta/prace%20magisterskie

9. D.C.Ma, J.Y.-C.Lin, M.E.Orlowska. Automatic merging of work items in business process
management systems. Proc. 10th Intl. Conf. on Business Information Systems (BIS2007), Poznań,
Poland, 2007

10. M.Momotko, K.Subieta. Dynamic Changes of Workflow Participant Assignment. Proc. of. 6th
ADBIS Conf., Vol.2: Research Communications, pp.175-184, 2002

11. M.Momotko, K.Subieta. Business Process Query Language - a way to make workflow processes
more flexible. Proc. 8th ADBIS’04, Springer LNCS 3255, pp.306-321, 2004

12. ODRA (Object Database for Rapid Application development): Description and programmer manual.
http://www.sbql.pl/various/ODRA/ODRA_manual.html , 2008

13. OMG. Business Process Modeling Notation (BPMN) specification. Final Adopted Specification.
Technical Report, 2006

14. M. Reichert and P. Dadam. ADEPTflex: Supporting dynamic changes of workflow without loosing
control. Journal of Intelligent Information Systems, 10(2), pp.93-129, 1998

15. S.Sadiq, O.Marjanovic, M.E.Orlowska. Managing change and time in dynamic workflow processes.
Intl. Journal of Cooperative Information Systems (IJCIS), 9(1-2), 2000

16. S.Sadiq, M.E.Orlowska. Architectural considerations in systems supporting dynamic workflow
modification. Proc. 11th Conf. on Advanced Information Systems Engineering, CAiSE99,
Heidelberg, Germany, 1999

17. SBQL4Workflow Prototype Implementation.
http://tomcat.pjwstk.edu.pl:8080/ProjectWorkflow/newsitem/list , May 2010

18. K.Stencel. Semi-strong Type Checking in Database Programming Languages. Editors of the Polish-
Japanese Institute of Information Technology, 2006, 207 pages (in Polish)

19. K.Subieta. Theory and construction of object query languages. Editors of the Polish-Japanese
Institute of Information Technology, 2005, 522 pages (in Polish)

20. K.Subieta. Stack-Based Architecture (SBA) and Stack-Based Query Language (SBQL).
http://www.sbql.pl/ , 2008

21. WfMC, WorkFlow process definition interface – XML Process Definition Language.
WfMC-TC-1025 (Draft 0.03a); May, 22, 2001

