Prototype of Object-Oriented Declarative Wor kflows

Marcin Dabrowski, Michat Drabik, Mariusz Trzaska Kazimierz Subietz

D polish-Japanese Institute of Information Technplog
{mdabrowski, mdrabik, mtrzaska, subieta}@pjwstk.gdiu
2 Institute of Computer Science Polish Academy oéBcis

Abstract. While in the traditional workflow processes thentol flow is determined
statically within process definitions, in declavatiworkflow processes the control flow is
dynamic and implicit, determined by conditions tbatur in the workflow data and the
service environment. The environment consists efadledactive objectswhich play a
double role. On the one hand, they are persisiatat structures that can be queried and
managed according to the syntax and semanticgjabey language. On the other hand,
active objects possess active parts that are ex@leuand represent workflow processes
or tasks. The approach is motivated by featuresate desirable in complex and less
regular business processes: (1) the possibilitgyoiamic changes of process instances
during their run, (2) mass parallelism of procesgtances and their components and (3)
shifting the availability of resources that workfie deal with on the primary plan as a
mean for triggering instances of process tasks. jdper presents the prototype of an
object-oriented declarative workflows on a comprediee example with roots in a real
business case.

Keywords: workflow, object-oriented, declarative, query laaga, active object,
dynamic workflow change, ODRA, SBQL

1. Introduction

The workflow technology is a well developed domaiith many commercial successes,
which include such standards as BPEL [2], BPMN [a83 XPDL [21]. Nevertheless, there
are still problems that undermine applications ofkflow management systems in important
business domains. We mention the following featutes are insufficiently developed in
popular workflow systems:

» Dynamic changes in workflow instances during tineir. For complex workflow processes
it may happen that their behavior must altered avithaltering their definitions. Dynamic
workflow changes are the subject of many reseaagpers, see e.g. [1, 5, 6, 9, 10,14,
15,16]. Although valuable results are achieved demtly concerning workflow patterns)
the problem in general still remains unsolved.

» Parallel execution of tasks within workflow process Currently, the parallelism is
achieved by explicitly programmed splits and jofA8ID, OR, XOR). In many cases such
a parallelism is insufficient, for instance, whenpeocess is to be split into many
subprocesses, but their number is unknown in advaRor instance, a workflow is

UThis research is supported by the Polish Minisfr§cience and Higher Education through the grant N
N516 3755 34.

processing a package of documents, processinglo€a@ment needs a parallel subprocess,
but the number of documents within packages varies.

» Aborting a process or some of its parts. Currersich situations are handled manually,
with possibilities of inconsistencies and non-otimuman action.

» Resource management. In currently developed wonkflitne work control flow (a la Petri
net) is on the primary plan and the resources (peomoney, time, work power,
equipment, infrastructure, offices, vehicles, etrg secondary and sometimes not taken
into account at all. This is unnatural for workflggvocesses because just availability,
unavailability, planning and anticipating requiregsources are the main factors that
should determine the process control flow.

e Tracking and monitoring. In current workflows tramf and monitoring of processes is
done by some specialized predefined tools withtéchifunctionality. However, tracking
and monitoring should concerns the entire workflEnwironment and all running process
instances, including databases that support woskfldhe state of resources, anticipation
of availability of resources, etc. For this reasiom core for tracking and monitoring should
be a query language (such as BPQL [11]) with tHE digorithmic power rather than
predefined tools.

» Parallel execution of workflow instances and thgdérts on many servers (hundreds or
thousands).

» Transaction processing. Classical implementatiomsetd on ACID properties and
2PC/3PC protocols are insufficient for workflowsudiness processes cannot be reversed,
hence the attitude to transaction aborting shoelctlitanged. For various reasons (e.g.
long transactions, priorities, performance) théuwate to the transaction isolation should be
changed too. Moreover, if process instances cashiamged during their run by many
independent agents, then the process instancetheingharts should be also the subject of
the transaction discipline.

In the project funded by the Polish Ministry of &wte and Higher Education we have
investigated a new workflow paradigm that has ttweptial to overcome the above
difficulties. We assumed that workflow instances && changed during their run, hence they
should possess a double nature. On the one sigleatketo be executable processes. On the
other side, they should be considered databasetwstes that are described by some
conceptual schema and can be queries and manipalstesual (nested) database objects.

The second assumption was inherent parallelisnl efaakflow processes and their parts.
We avoid explicit splits and joins. Instead, weumss synchronization of parallel processes by
special constructs of a query language. In this way workflow instances remind PERT
(Program Evaluation and Review Technique) netwoakiser than Petri nets. PERT naturally
describes dependencies between tasks within nhoputenized human activities and can be
formalized using the object-oriented approach. Sackworkflow system we describe as
“declarative”, because the control flow is not detmed explicitly, but through declarative
gueries. Sequences of tasks can be supportedisy sates and conditions on the states.

The third assumption is shifting the resource manant on the primary plan. Resources
(available, planned, anticipated) are reflectedhie database. The control flow of process
instances can be determined by conditions addigessgources.

In this way we came to the ideaadftive objectswhich have the mentioned above double
nature. Active objects are persistent data strasttinat are described by a database schema
and can be queried and manipulated according tosyimax and semantics of a query
language (in this role SBQL [19, 20]). On the otlwnd, active objects possess active
(executable) parts. We distinguish four kinds oftsactive partsfirecondition execution

code endconditiorand endcod€(in this role SBQL too). An active object waits fexecution
until the time when its firecondition becomes tradter that, the object’'s execution code is
executed, and all its active sub-objects are ptd the waiting-for-executionstate (and
perhaps executed if their fireconditions become)triExecution of the execution code of a
given active object is terminated when either lafl aictions are completed (including active
sub-objects) or its endcondition becomes true. rAftdfillment of an endcondition some
actions might be necessary (e.g. aborting trarmasjti thus an optional endcode. Each active
object is an independent unit that can be maniedldty SBQL functionalities (updated,
deleted, etc.). Active objects can be nested.itnwlay they can represent workflow processes,
their tasks, subtasks, etc. Active parts can aklsauppdated; their parsing, type checking,
optimization and compilation are performed on-tlyeBindings are mostly dynamic.

The widely recognized paper devoted to dynamic flank changes is [14]. It presents
some framework for formalizing process graphs apdating operations addressing such a
graph. There are very valuable observations conugrie necessity of dynamic workflow
changes for real business processes and the rgadssirong discipline within the changes to
avoid violation the consistency of the processBsimerous authors follow the ideas of this
paper (a more complete citation list is presentefB]). The fundamental difference of our
approach is that we do not determine explicitly pmecess control flow graph. It is on the
secondary plan, determined dynamically and impyidily fireconditions and endconditions.
In majority of cases the control flow graph cardiféerent depending on a runtime state of the
workflow, database and computer environment. Thablpm of the necessity of various
control flow graphs for the same business procesme of the motivations for the research
presented in [14], but it is not easy to see hoshsa feature can be achieved within the
proposed formal workflow model. In our case thddeais an inherent property of the idea.

The primary plan of declarative workflows dealshwé database schema that describes
executable data structures representing the pregegais by definition enabling all updating
operations that are provided within the assumedyaroming language SBQL. To restrict
undesirable changes that may violate the consigtehprocesses we can use the semi-strong
typing system [18] that is implemented for SBQLisTaf course may not be enough for more
sophisticated situations. For this goal we plamtplement facilities that are well-know from
relational systems, such as user rights, integotystraints, business rules and triggers.

Our active objects remain agents considered withe agent-oriented research school.
However, we avoid to use this association and teslogy because.

The detailed description of the project assumptiand preliminary results from the
prototype [7] are presented in [3]. In [4] we dd3erin detail the concept of active object and
related issues. To check the concept we have ingrttad three different prototypes. The first
prototype [8] was focused on the orchestratioMtb Services. After this experience we
concluded that not all goals from the mentionedvabare addressed. The second prototype
[7] was based on Web Services too and on the ODMAstructure (objects, queries), but it
was still limited. This paper is the first descigpt of the third prototype [17], most advanced
and with no previous tradeoffs concerning the néeaiand current workflow technologies.
The prototype is still a proof-of-a-concept ratlaeusable tool. More research and financial
support is necessary to turn it into a product.

The rest of the paper is organized as follows.i8e@ presents basic assumptions and the
architecture of the prototype. Section 3 presents dynamic instance modifications can be
performed. The presentation is based on a real geaof a workflow that was taken from the
experience in developing a bank system supportieditcprocesses. Section 4 concludes.

2. Prototype of Object-Oriented Declarative Wor kflow

THET

ODRA DBMS ODRA Wrapper 9

Server-side GUI

Application Logic e Bneration

)

l(!

N L The servlet container \\‘
NS S
o
\
S DA
Post/Get Forms Client-side AJAX
GUI GUI

A client web browser G -

Fig.1. Architecture of the prototype

The prototype [17] is built upon the ODRA syster2][and a Web-based application for
manipulating prototype functionalities. The Web tparses the Groovy and Grails
technologies. A workflow server part is writtenJava. Fig.1 presents the overall prototype
architecture.

The prototype can be tested using a Web applicatadied SBQL4Workflow, Fig.2. It
allows for all administrative tasks like creatingopess definitions, manipulating them,
instating processes, freezing parts of a runningkflaw and more. A GUI generation module
is based on the core Grails framework technolode@daGSP (Groovy Server Pages). It is
similar to JSP (Java Server Pages). A client sidsguipped with advanced AJAX controls to
allow dynamic loading of a process tree and maaipug workflow objects minimizing the
need to reload web pages. The SBQL code editorsyititax highlighting that is included into
GUI makes the work with workflows much easier.

The ProcessMonitor is a Java application that @arub as a separate thread on a separate
machine. It periodically checks (basing on timepeech Processinstance. Then, according to
the values retrieved from condition codes, the Essionitor executes the execution code of
the process.

The prototype is build using the standard threedapproach. A middle layer consists of
the Application Logic and ODRA Wrapper. The cormsging API allows for work with
workflow objects. It is used not only by GUI andtRrocessMonitor but can be used by any
Java program, so writing a different client apgiima is possible. The ODRA Wrapper is a
wrapper between the JOBC library that is used tesx the ODRA DBMS through queries
and Java business objects used by the ApplicatogicL All workflow data are stored on the
ODRA DBMS []. The database schema is presentdioeiri-ig.3.

\]
v

SBQL4Workflow

4,
r prototype implementation

Workflow Instances

Getting started Show Edit | Refresh | ¥]Auto refresh (20s) © Hep

> @ Request (gleballd: 22, status: ACTIVE)
b @ Suspension (globalld: 37, status: WAITING)
Information for customer (globalld: 38, status: INACTIVE)
Definitions Suspend (globalld: 33, status: INACTIVE)
Activate (globalld: 40, status: INACTIVE)
+ (3 verification (globalld: 27, status: ACTIVE)
g Check client account (globalld: 29, status: WAITING)
i " £) Check debts regist loballd: 28, status: ACTIVE]
Administration + @ Rejection (gluballdg: 411:!5(:3:“: WAITING) :
Information for customer (globalld: 42, status: INACTIVE)
+ @ Ratification (globalld: 30, status: WAITING)
Information for customer (globalld: 33, status: INACTIVE)
Signing contract (globalld: 34, status: INACTIVE)
Information to debts registry (globalld: 36, status: INACTIVE)
Preparing contract (globalld: 32, status: INACTIVE)
Final check (globalld: 31, status: INACTIVE)
Money transfer (globalld: 35, status: INACTIVE)
~ @ Analysis (globalld: 23, status: FINISHED)

@ Initial formal check (globalld: 24, status: FINISHED)

@ Check client rating (globalld: 25, status: FINISHED)

@ calculate general limit (globalld: 26, status: FINISHED)

Fig.2. A screen shot of the SBQL4Workflow process hierarchy

Process Processinstance
+globalld +globalld
+name +name
+fireCondition . +fireCondition
+execCode +execCode
+endCondition +endCondition
+endCode +childrer +endCode "
-timeout +timeout .
+getAttribute(warto$¢ name) +status *children
+setAttribute(warto$¢ name, warto$¢ value) +processld
+instanceld
+timeOfLastCheck
0.1.3 +getAttribute(warto$¢ name)
% +setAttribute(wartos¢ name, wartosc¢ value)
3
0.1
o
g
+attributes Attribute *
+value
+name
* +attributes

Fig.3. Workflow database schema

The process objects represent structures createttheébyorkflow programmer. Once a
process is initiated, all data, including the dath sub-processes, are copied to the
corresponding Processinstance objects. The Pafglir€h bidirectional pointer, combined
with other SBQL query operators, gives a greatilfiity in expressing conditions and codes.
For instance:

» Find all my children (the code is written with reddo one particular Process).

e Find my parent.

» Find a process with a given status.
» Find a process with a given name.

These constructs can be easily combined for marglax search, for instance:
» Find a child that has a certain name and status.

[children where name = 'foo' and status = ProcessSta tus.FINISHED |
e Check if all my children have the status ‘Finished’
| exists(children where status = ProcessStatus.FINISH ED) |

» Find my “brother” (using parent.children).
» Find all my “nephews” (using parent.children.chddy.

To allow processes to store ad-hoc additional dagahave provided the Attribute class
with a set of methods in the Process and Proceastes classes addressing attributes. The
attributes can be easily used to control the flaugn the conditions are based on them) and
allow communication between the processes (as apneeBs can query another Process
attributes and change their values).

| getAttribute('contractSigned')="true' |
The code example presents the access to the &tribmed ‘contractSigned’.

| setAttribute('mailSent’; sendMail(foo@bar.com’; 'M ail content’)) |

The code sends an email and stores the resultessice failure) as a process attribute.

3. Dynamic Instance Modifications

After creating a process instance for any busimeason it can be the subject of changes
(without changing the corresponding process défimjit Changes can be performed after
launching an instance. Changes can also concewegsalefinitions and this case is rather
typical for all workflow systems. Our prototype hag following options concerning changes
within workflows:

» Editing and modifying process definitions;

« Instantiating process instances according to tfiaitiens;

« Editing and modifyinga process instance by editing its core attributeh s name, fire
condition, end condition, execution code, end cete;

« Running any SBQL program (having updates, insed&letions, etc.) in order to
manipulate the entire workflow environment, inchaglinested active objects representing
processes, a resource database and any othettgrgrsisvolatile objects that are available
within the environment.. The programs include SBfdieries as expressions.

Changing a process instance may require furthengd® of other instances to ensure
consistency of the corresponding business pro¢gss.prototype offers much flexibility in
controlling process instances without altering otirestances, mainly by preparing more
generic fireconditions and endcondition that aseirsitive to some changes of active objects.
For instance, an endcondition can test completfaall@orresponding sub-processes with the
use of a universal quantifier. In many cases, h@nealtering a process instance may require
some actions on other instances. These actionBecaasted within a transaction.

To demonstrate the possibility of dynamic instamoedification we have created a
comprehensive example of real business processeserong issuing and granting bank
credits for customers. The structure (schema) efpttocess presented in Fig.4. All presented
SBQL codes are tested on the prototype.

Request Arcount
Analysis Verification owner
[l tial formal check J [(.n K debts regist J number
nitial formal checl zheck debts regis
L amount
[Cheek client rating J [Check client account J
—
Customer
L S5N
Ratification name
Suspension
— sumame
Infarmation for customer add ress
Prepare contract
- phone
emall 1.
Activate
e —
- Ao
Rejeution creditAmount
salaryAmount
expensesAmount
creditYears
createdFor
"Bank credit” workflow instance initial structure
Additional resources objects

Fig.4. A bank credit process hierarchy and resource abpmttemas

Example 1. It demonstrates how to insert a new process inteogkflow instance structure,
without the need of changing the already workinggesss instances details.

Ratification (A)

[Final check (F) (Prepare contract (F)] (info for customer (F)]

)
(Sign contract (F)] [Money transfer (F)] [Inlo to debts registry (A) J

T

[New account money transfer (W) J

Fig.5. Adding a ,New account money transfer” process.
Letters in brackets correspond to status of a psedastance: FINISHED, ACTIVE.

Assume a bank credit process in progress. At tldeoérit the money that the customer has
requested is transferred to his/her account. Howeweer the transfer the customer has
decided to change the target account. In this tgituave can correct the working workflow
instance by inserting an additional subprocessaswtl do the requested operation, Fig.5. To
achieve the goal we have to find a workflow instatitat should be modified and create a new
process calledNew account money transfén it. It will have two attributes to store thalie

of an old and new account number, named respegtjedd AccountNt, " newAccountNt

After inserting the new process its status is eefWaiting'. Its firecondition requires
finishing the subproces$lpney transfet, hence it looks as follows:

exists(parent.children.Processinstance where name =
‘Money transfer' and status=ProcessStatus.FINISHED)

Fire condition of ,New Account money transfer”.

The tokenparentis a navigation from the new subprocess to itemaprocessRatification),
then children is a navigation to all the parent’s subobjectsymfr which we select
Processinstancesith proper conditions.

The purpose of this process is to withdraw the mdrem the old account and transfer it
into the new one. First a new account should bated:

create Account (ref (Customer where SSN =
parent.parent.Processinstance.getAttribute(‘custome rSSN")) as
owner, getAttribute('newAccountNr') as number, 0 as amount)

Part of execution code that creates new account.

The code creates a new account object with the etedbdelivered from thengwAccountNr
attribute of this process instance. Now we showld 6ut the information about the amount of
money that should be transferred. This informattoa part of the ApplicationForni object
which is available, so the task will be to find thpplication form assigned to the current
customer and obtain the ,creditAmount” value. Tokmahis value available for further
processing it will be saved as a value of a newdated attribute calledamount:

(self as p).(p-setAttribute(‘famount’;(ApplicationFo rm where
createdFor.Customer.SSN =
p.parent.parent.Processinstance.getAttribute(‘custo merSSN).
creditAmount))

Part of execution code that obtains a value of itraghount and creates a new attribute for it.

Now it is possible to withdraw the money from tHd account. To do that the right Account
object should be found (the account number is tleduev of the process instance
»OldAccountNt attribute), and the value of itamount attribute should be decreased by a
value of this process instancamount attribute:

(self as p).(((Account where
number=p.getAttribute(‘'oldAccountNr")).(amount:=amo unt-
(p-getAttribute(‘famount’) as a).((integer)a))))

Part of execution code that withdraws the monegnftbe old account.

Then the new Account object should be found (tlmant number is the value of the process
instance pewAccountNr attribute) and its ,amount” attribute should hecieased by the
value of process instancamount attribute.

(self as p).(((Account where
number=p.getAttribute(‘'oldAccountNr")).(amount:=amo unt-
(p-getAttribute(‘famount’) as a).((integer)a))))

Part of the execution code that transfers the manteya new account.

Before making any changes to a working workflowtanse it should be suspended so that the
state before and after applying the change is stardi Knowing the current state of all
process instances we can assume that a newly @neateess should start when thdgney
transfer” is finished, and should end when the transfer djperabetween accounts is
complete. In this case the insertion of a new pedastance doesn't influence any other
process, the construction dRatification” end condition ensures that it will not finish brefo
every of its child finishes.

not exists(children.Processinstance where status <>
ProcessStatus.FINISHED)

Part of the ,Ratification” end condition.

Example 2. This example demonstrates the possibility of mzatibn of a running workflow
instance structure in order to meet new requiremmeit shows how the proper written
execution code can modify behavior of the workfiostance and how the workflow
administrator can influence the behavior.

The customer has decided to increase the creditiaimast before signing the contract. In that

case there is no need to restart the whole workifitstance, but only some of the processes.

The activities that the workflow administrator haeeperform are the following:

1. Suspend a chosen workflow instance.

2. Add new process instancingrease credit(as a child of Ratificatior).

3. Delete process instances that are no longer ret(jkéerificatior” - child of ,Request
and Jnitial Formal Check - child of ,,Analysi$).

4. Change the conditions of other involved proceswimses to conform to the new structure.

5. Resume workflow instance.

The purpose of the newly createthgrease credit process instance is to change the
~creditAmournit attribute of the ApplicationForni object associated with the customer.

(self as p).(ApplicationForm where createdFor.Custo mer.SSN =
p.parent.parent.Processinstance.getAttribute(‘custo merSSN").
creditAmount := 200000;;

Part of execution code that increases the credivamh of the application form associated
with the current customer.

It also resets the ,Analysis” and ,Ratification”qmess instances in order to perform their
tasks once more. It is done by changing their stiguWaiting’ so the process monitor will
include them when checking the candidates to aetivEhe children of this processes should
also be included with this difference that the@tss will be changed tgnactive” .

(parent.parent.children.Processinstance where name =
'‘Analysis').status:=ProcessStatus.WAITING

Part of execution code that changes the statu\oflysis” process instance into WAITING.

((parent.parent.children.Processinstance where
name="'Analysis").children.ProcesslInstance).(status: =ProcessStat
us.INACTIVE)

Part of execution code that changes the statuoflysis” children into INACTIVE.

| parent.Processinstance.status:=ProcessStatus.WAITIN G

Part of execution code that changes the statudRattification” process instance into
WAITING.

(parent.children.Processinstance).(status:=ProcessS tatus.
INACTIVE)

Part of execution code that changes the statugRatification” children into INACTIVE.

Apart from process instances there are also at#ribilnat values should be set to the previous
state. This concerns thetate attribute of the Request process instance, which holds the
information about the current status of the apgtihcaform.

parent.parent.Processinstance.setAttribute('state’; ")

Part of execution code that sets the value of ,Rstju,state” attribute to an empty string.

When the |ncrease credit will perform the given task it's no longer neededthe system
and to ensure that it will act only once, we cazate such an end code that will delete it.

(self as p).(delete Processinstance where globalld =
p.globalld)

The next step is to get rid of unnecessary progesances such asnjtial formal check and

» Verificatiori’, because there is no need to repeat them whentbb@lamount of the credit is
changed. After that the conditions of some progessnces have to be adjusted. Thdgck
client rating’ will start as soon asAnalysis is active instead of start after thiitial formal
check finishes.

exists(self.parent.Processinstance where status =
ProcessStatus.ACTIVE)

Updated endcondition of ,Check client rating”.

All of the statements that concermnitial formal checkK should also be removed from
»Analysi§ end condition.

not exists(self.children.Processinstance where stat us <>
ProcessStatus.FINISHED)

Updated endcondition of ,Analysis”.

The ,Ratificatiorf will no longer start after the\erification’ but as soon as theApalysis
finishes.

exists(parent.children.Process exists(parent.children.Process
Instance where Instance where name="'Analysis'
name="Verification' and and
status=ProcessStatus.FINISHED) status=ProcessStatus.FINISHED)
Part of the firecondition of ,Ratification” New part of the firecondition of
that needs to be changed. .Ratification”

10

Now the workflow instance is ready to properly hienthe updated application form and
perform suitable tasks in order to complete theiest

Request (A) Requast (A)
Analysis (F) Verification (F) Analysis (W)
{Inmal formal check (F) J [Check debts registy (F)]
Ratification [W)
(crescotentramng) (Grnesicotent assount /)
— | ——
[|
Suspension W) Prepara cortract (I)
Ratifi A
Suspension (W) ieon® Infe o1 customer ()
e
Sign contract (A) F—— Maney transfer ()
S
——
Rejection (W)
ol forcosomer ()
L
\ LS
() - Inactive, (W) - Waiting, (A) - Active,
(F) — Finished
.Bank credit” workflow instance state .Bank credit” workflow instance state
before applying changes. after applying changes.

Example 3. It demonstrates how to apply a modification thdi¢ets several process instances
of the same kind.

The modifications are to be applied to tHepkLimit attribute of the Calculate general
limit” process to 700000. Changing the process defiiiostraightforward through the GUI
tool. However, changing manually all of the workingtances in this way is awkward and can
be error prone. For this reason we create an SB&kEraent which will access the workflow
environment and will do the necessary modificatiortse statement finds all of the instances
of the ,Calculate general limftsubprocess, which has amactive’ or ,Waiting' status, and
then updates the value of thHeankLimit attribute to the new value.

(Processlinstance where name = 'Calculate general li mit' and
(status=ProcessStatus.INACTIVE or
status=ProcessStatus.WAITING)).(setAttribute('bankL imit';'70000
0%)

SBQL statement which updates the ,Calculate genaraf’ ,bankLimit” attribute in the
proper workflow instances.

11

Request (A) Fequest (A) Request (A)

Analysis (W) Analysis (A) Analysis (F)

Initial formal cheek (1) nitial formal check (A) [In'ﬂial formal check (F) J
Check client rating (1) Check client rating (W) [Check client rating (F) J
Calculate genera limit (W) [Calculale general limit (F) J

A

Instance 1 Instance 2 Instance 3

Update of the ,Calculate general limit” ,bankLimitattribute will only apply to the instance
number one and two.

Example 4. It demonstrates how the working process instance dymamically create new
process instances.

The commonly considered case in a process definitiith parallel subprocesses is that a
process instance is to be split into a fixed nuntfesubprocesses. In many business situations
the case leads to severe limitations, because uhber of the subprocesses is known only
during the execution of the instance. In such & e@s should provide an option to create new
subprocess instances dynamically, within the exeawtode of the process instance. To show
this possibility we consider example where thereaiseed to send an e-mail with some
information to the customer. During filling a reguform a customer can provide some
alternative e-mail addresses and we want to erthateour e-mail will be delivered to all of
them. The process responsible for the contact thveghtcustomer islpformation for customér

so we will modify it to provide required functioiitgl During the execution of this process
instance it will create as many children processainces sending e-mails as required.

Irtormation for customer

[Send rall Bo xXxx B KK KK]

[Infarmation for customer] [Send mail 1o yyyEyyv.yy]

,Information for customer” process Jnformation for customer” process
instance before running its execution code. instance after running its execution code.

The execution code of thénformation for customércreates a process instance for each of an
e-mail address of a current customer:

(self as p).(((Customer where
SSN=parent.parent.Processinstance.getAttribute('cus tomerSSN)).
email as e).(create ProcessInstance(...)))

Shortened execution code of ,Information for custém

12

Then we can populate the execution code for thdynergated process instances in such way
that it will send mail for one given address. Ifesmail was sent successfully it will create an
attribute /mailSent with value 1 to hold the information which willebused later to decide if
the process should end or restart.

setAttribute('mailSent';sendMail (‘xxx@xxx.xx";'Dear Customer,
Your application should be corrected.");;

Part of the execution code of a dynamically cregieatess instance that sends e-mail to a
given address and sets an attribute value deperalintpe result.

if(getAttribute('mailSent’)=0) then (status :=
ProcessStatus.WAITING)

Part of the execution code of a dynamically cregiemtess instance that restarts it when
sending mail has failed.

4. Conclusion

We have presented the idea of an object-orientelhiddive workflow management system
that is especially prepared to achieve an imporgaal: the possibility of changing process
instances during their run. We have discussed cuesees of such a requirement and have
argued that such a revolutionary feature cannotitddeved on the ground of traditional
approaches to workflows based on specificationaftrol flow graphs. Our idea allows to
achieve next important features, such as masslganal of processes and flexible resource
management. The idea is supported by the workiotptype that shows its feasibility. The
prototype is implemented on the basis of ODRA, bjea-oriented distributed DBMS, and
SBQL, a query and programming language designedirmptémented for ODRA. In the
paper we present comprehensive examples showing éhalgclarative workflow can be
defined and how it can be dynamically changed. &smples have shown the feasibility of
the idea of declarative workflows for real busineases.

The prototype is still under development. We anglyipg for next grants that will allow us
to turn it into a commercial (open source) prodiitiependently from the ODRA-oriented
project, the idea is being implemented as a prtagiecommercial tool for Small and Medium
Enterprises.

Acknowledgements. Our special thanks to Prof. Mariazkieta Ortowska, who originally formulated
the project proposal. We would also like to exprasisdeep gratitude to the numerous developerseof t
ODRA system.

5. References

1. W.M.P. van der AalstGeneric workflow models: How to handle dynamic chaagd capture
management informationProc. 4" Intl. Conf. on Cooperative Information Systems (fx&199),
Los Alamitos, CA, 1999

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.KleiA,Leymann, K.Liu, D.Roller,D.Smith,
S.Thatte, |.Trickovic, S.WeerawaranBusiness Process Execution Language for Web Seyvice
Version 1.10ASIS, 2003.

M.Dabrowski, M.Drabik, P.Habela, K.Subietabject-Oriented Declarative Workflow Management
System Editors of the Institute of Computer Science, $tolAcademy of Sciences, ISBN 978-83-
922508-3-8, 20009, 176 pages.
http://www.ipipan.waw.pl/~subieta/SBA_ SBQL/articlesf@entAndAbstract.htm

M.Dabrowski, M.Drabik, M.Trzaska, K.Subieta. Dynamic ages of Workflow Processes.
Submitted to publication, April 2010.

C.A.Ellis. K.Keddara, GRozenberBynamic change within workflow syster®soc. ACM Conf. on
Organisational Computing Systems (COOCS 95)

C.A.Ellis. K.Keddara, and J.Waindvlodelling workflow dynamic changes using time hyIfidgy.
In Workflow Management: Net-based Concepts, Modeéshniques and Tools (WFM’98), 98(7),
Computing Science Reports, pp.109-128. Eindhovenddsity of Technology, 1998

A.Juszkiewicz, A.Aksamit, M.JaworskWorkflow system based on the object-oriented DBMS
ODRA MSc. Thesis. Polish-Japanese Institute of InfoionaTechnology, September 2009 (in
Polish).http://www.ipipan.waw.pl/~subieta/prace%20magidtiers

t.Korneluk, K.Jasiotek. Web Services choreograplagedn on an object-oriented process model.
MSc. Thesis. Polish-Japanese Institute of Inforomaffechnology, September 2009 (in Polish).
http://www.ipipan.waw.pl/~subieta/prace%20magidters

D.C.Ma, J.Y.-C.Lin, M.E.Orlowska.Automatic merging of work items in business process
management systenRroc. 18 Intl. Conf. on Business Information Systems (BIS200Tozna,
Poland, 2007

M.Momotko, K.Subieta.Dynamic Changes of Workflow Participant Assignme®ioc. of. &
ADBIS Conf., Vol.2: Research Communications, pp.175; 2802

M.Momotko, K.SubietaBusiness Process Query Language - a way to make lawrkfocesses
more flexible Proc. § ADBIS’04, Springer LNCS 3255, pp.306-321, 2004

ODRA (Object Database for Rapid Application develepth: Description and programmer manual.
http://www.sbql.pl/various/ODRA/ODRA_manual.htm?008

OMG. Business Process Modeling Notation (BPMN) djmtion. Final Adopted Specification.
Technical Report, 2006

M. Reichert and P. DadamADEPTflex: Supporting dynamic changes of workflow euitHoosing
control. Journal of Intelligent Information Systems, 10¢®).93-129, 1998

S.Sadiqg, O.Marjanovic, M.E.Orlowskilanaging change and time in dynamic workflow procgsse
Intl. Journal of Cooperative Information System£(5), 9(1-2), 2000

S.Sadig, M.E.OrlowskaArchitectural considerations in systems supportithgnamic workflow
modification. Proc. 11" Conf. on Advanced Information Systems Engineeri@AiSE99,
Heidelberg, Germany, 1999

SBQL4Workflow Prototype Implementation.
http://tomcat.pjwstk.edu.pl:8080/ProjectWorkflowrstem/list, May 2010

K.Stencel.Semi-strong Type Checking in Database Programminguages Editors of the Polish-
Japanese Institute of Information Technology, 2@0&, pages (in Polish)

K.Subieta. Theory and construction of object query languagéditors of the Polish-Japanese
Institute of Information Technology, 2005, 522 padi@ Polish)

K.Subieta. Stack-Based Architecture (SBA) and StackeBa Query Language (SBQL).
http://www.sbgl.pl/, 2008

WIMC, WorkFlow process definition interface — XML dtess Definition Language.
WfMC-TC-1025 (Draft 0.03a); May, 22, 2001

14

