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Abstract

In this article, we consider Zipf-Mandelbrot law as applied to texts in natural

languages. We present a simple model of dependence of the law on the text size,

which is featured by variable power-law tail and constant ratio of the most frequent

words. As a result we derive several closed formulas, which accord with empirical

data qualitatively and partially quantitatively. For example, there appears to be

a minimal length of literary texts equal to ≈ 159 word tokens for English.
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1 Introduction

For a definite object in which we can identify tokens and count them as instances of some
identifiable types, Zipf’s law (Zipf, 1935, 1949) is a statement that the frequency f(w) of
all tokens belonging to given type w is roughly inversely proportional to rank r(w) of the
type,

f(w) ≈ const
r(w)

. (1)

Rank r(w) is defined as the ordinal number of w on the list of all empirical types sorted
in descending order according to f(w).
Zipf’s law forms a beautiful example of quasi-interdisciplinary empirical regularity

which possesses the following features:

1. Regularity is observed in data resuming phenomena investigated in various scien-
tific disciplines. Examples are biology (Camacho & Solé, 1999), economics (Pareto,
1897), linguistics (Estoup, 1916), physics (Tsallis, 2000). (In non-linguistic appli-
cations, rank r(w) can be proportional to some simple variable describing physical
size or magnitude of w, such as income in the distribution of personal incomes.)

2. Regularity inspires a multitude of half-explanations introducing assumptions which
do not seem to be so universal as the regularity itself. Examples are random-
typing text model (Belevitch, 1956; Li, 1992), effects of artificial ranking of sample
taken from distribution with large variance (Günther, Levitin, Schapiro, & Wagner,
1996), eco-system’s dynamics (Camacho & Solé, 1999), fractal vocabulary model
(Mandelbrot, 1983), new thermodynamic formalism (Denisov, 1997), sampling of
LNRE distributions (large number of rare events) (Khmaladze, 1987; Baayen, 2001),
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information theoretic models of language learning (Harremoës & Topsøe, preprint;
Dębowski, 2002).

3. Regularity is roughly described by a simple mathematical formula, but domain spe-
cific investigations usually uncover many finer significant departures. Examples
include initial bend and final power law (Mandelbrot, 1954), better fit of tail by the
inverse-square distribution of frequencies of frequencies (Kornai, 1999) (also inde-
pendently observed by us and by M. Montemurro), another bend for very large ranks
(Montemurro, 2001) (also observed in economical data), parameter dependence on
the size of texts (Orlov, 1982), or investigated fraction of a text (Baayen, 2001).

In dealing with empirical regularities such as Zipf’s law, for which there is no unique,
accurate and enchanting theory, one usually follows either of often disjoint ways: empirical
or rational. In the empirical approach, one seeks for the formula most tightly interpolating
given experimental data, even at the cost of introducing obscure additional parameters
and worsening the extrapolations. The rational method consists in deriving the regularity
from simpler principles or other empirical facts, even at the cost of worsening the fit of
already observed data in comparison to more elaborated but obscure models.
Nonetheless, the possibility of combining empirical and rational approaches arises

sometimes. For example, one can complicate a formula in concern to have additional
apparently random parameters and to fit better some portion of data, but the formula
with the same class of parameters plus some conditions on their variability can fit a
much larger scope of data than before the modification. In fact, it is the way how many
fundamental theories in natural sciences have been born.
The aim of this article is to present a modest example of combined empirical-rational

approach given by a simple model of Zipf’s law variability across texts of different length.
We will speak only of Zipf’s law applied to texts in natural languages. We are going
to show that Mandelbrot’s modification (2) of formula (1), introducing two unknown
parameters, can be perceived as less arbitrary if we let the values of the parameters be
linked with the text length according to several common-sense postulates.

2 The model

In quantitative linguistics, Zipf’s law (1) is formulated for types w being types of words
(word-forms or lemmas) encountered in some finite text. The tokens are occurrences of
words at consecutive positions in the text. It is also this text against which both counts
f(w) and ranks r(w) are computed. (In the case of words with the same count, we assign
them distinct ranks.) It is important to note that language texts treat on various subjects,
so rank r(w) of particular word w strongly depends on the particular text. The exception
for this rule is a group of words constantly occupying the lowest ranks and identifiable
with functional (grammatically auxiliary) words.
Mandelbrot (1954) observed that instead of formula (1), formula

f(r) ≈
⌊

[

V + ρ

r + ρ

]1+ε
⌋

, (2)

where we abbreviate f(r) = f(w(r)) for r = r(w) and bxc is the greatest integer smaller
than x, approximates statistics of words better. We have r ∈ {1, 2, ..., V }, where V is
the size of vocabulary for the given text. Formula (2) fits the whole range of finite-text
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data better than (1), but there are some departures still (Baayen, 2001). The formula
contains also two new parameters to estimate: ε and ρ. (For very large texts, 0 < ε � 1
and 0 < ρ < 10.)
It is important to note that parameters V , ρ, and ε depend quite regularly on the size

N of the text, i.e. N being the number of word tokens in the text. Especially, ε < 0 for
N < N0 and ε > 0 for N > N0, where N0 is some characteristic text length, called Zipfian
size (Orlov, 1982).
Orlov (1982) described this phenomenon and gave it some mathematical model in

terms of interpolation formulas for random sample (urn model, or IID process) drawn
from LNRE distribution. See also Khmaladze (1987), Baayen (2001) for more elaborate
calculations. We had learned of the article by Orlov (1982) from an article by Sambor
(1988). By the time we collected a copy of Orlov (1982), we had found out a very different
heuristic model of Zipf’s law variability which we introduce here.
If one considers an ensemble of texts of variable size N written in the same language,

it is reasonable to assume that the same grammar is obeyed in the whole ensemble.
The conservation of grammar across the ensemble may imply the stability of probability
estimates for the functional words which occupy constantly the same lowest ranks. Thus

f(r)

N
≈ const for r = 1, 2, ..., K, (3)

for the majority of texts, where K is some small natural number and N is assumed to be
the length of the text in the ensemble. If N → ∞, however, f(r)/N → const for all r.
Thus

ε → const and ρ → const for N → ∞. (4)

Postulates (3), (4) when applied to (2) can be approximated by the following set of three
postulates:

1. There is such N = N0 that ε = 0.

2. For all N , it is f(0)/N = const.

3. For all N , it is f ′(0)/N = const.

(Formula (2) allows us to define the value f(0) and the derivative f ′(0).)
In the further reasoning, we will assume ρ � 1, despite the empirical data. Using (2),

one can compute the number of tokens N in the text as

N =

∫ V

0

f(r)dr ≈
∫ V

0

[

V + ρ

r + ρ

]1+ε

dr =
ρ

ε

[

V + ρ

ρ

]1+ε [

1 −
[

ρ

V + ρ

]ε]

. (5)

For N = N0, let us write V = V0, ρ = ρ0. Combining postulates 2 and 3, one obtains
f(0)/f ′(0) = const. Inserting (2) for any N and for N = N0, and preserving terms linear
in 1/ρ yields

ρ = (1 + ε)ρ0 for ρ � 1. (6)

Parameter N0 can be rewritten by means of V0 and ρ0 as

N0 ≈
∫ V0

0

[

V0 + ρ0

r + ρ0

]

dr = ρ0

[

V + ρ0

ρ0

]

ln

[

V0 + ρ0

ρ0

]

. (7)
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(Formula (5) can be applied directly for ε 6= 0. Formula (7) is its limit for ε → 0.) Using
(5), (7), postulate 2 with (2) for any N 6= N0 and for N = N0 gives

ρ0 ln

[

ρ0

V0 + ρ0

]

=
ρ

ε

[[

ρ

V + ρ

]ε

− 1

]

. (8)

It is convenient to define

λ = 1 − εx

1 + ε
, (9)

x = ln

[

V0 + ρ0

ρ0

]

. (10)

Then
1 + ε =

x

x − 1 + λ
. (11)

Equations (8) and (6) yield

[

V + ρ

ρ

]1+ε

=

[

1 −
[

ε

1 + ε

]

ln

[

V0 + ρ0

ρ0

]]

−
1+ε

ε

= [e(λ)]x , (12)

where function e(λ) is defined as

e(λ) = λ1/(λ−1). (13)

Resuming, one obtains

f(r) ≈ [e(λ)]x
[

ρ0

[

x
x−1+λ

]

r + ρ0

[

x
x−1+λ

]

][ x

x−1+λ
]

, (14)

N ≈ [e(λ)]x ρ0x, (15)

V ≈
[

[e(λ)](x−1+λ) − 1

x − 1 + λ

]

ρ0x, (16)

where V was computed from property f(V ) = 1.
In equations (14)–(16), three parameters appear: ρ0, x and λ. The status of ρ0 and x

is different from λ. Parameters ρ0 and x, where ρ0 > 0, x > 1, should be the properties
of a given language, i.e. they should be constant in the whole ensemble of texts in that
language. Parameter λ, where λ > 0, is a function of the size of text N and the two other
parameters. Since e(λ) > 1, our model can be only applied if N ≥ ρ0x.
Both text size N and vocabulary size V are monotonically decreasing functions of λ,

For λ → ∞, it is N, V → Nmin = ρ0x. For λ → 0, it is N, V → ∞. Value λ = 1
corresponds to ε = 0 and N0 = ρ0xex. We can see that ε < 0 for N < N0 and ε > 0 for
N > N0 actually holds for our model. (By the way, condition x > 1 is necessary since we
need to have f(r) > 0 and monotonically decreasing w.r.t. r also for λ → 0.)
If we would like the model to describe texts of any positive length, N ≥ 1, we might like

to fix ρ0 = 1/x so that the minimum of N and V be Nmin = ρ0x = 1. Then we have just
one global parameter x left and N0 = ex. In this case, there is a simple relation between
the Zipfian size N0 and the Mandelbrot’s exponent 1+ε for texts of asymptotically infinite
length,

1 + ε =
ln N0

lnN0 − 1
. (17)
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Figure 1: The plot of e(λ) = λ1/(λ−1).
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Figure 2: Plots of vocabulary size V as function of text size N for ρ0 = 1/x and x =
3.0, 8.0, 10.0 (curves increasing respectively).
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Figure 3: Plots of Mandelbrot exponent 1 + ε as function of text size N for ρ0 = 1/x and
x = 3.0, 8.0, 10.0 (curves decreasing respectively).
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According to Orlov (1982), N0 for Russian seems to range from 3000 to 20000, so we
would get 1 + ε ranging between 1.143 (x = 8.006) and 1.112 (x = 9.903) respectively.
In our model, log V seems to be an almost linear function of log N but in fact, log V

is a slightly concave function of log N (with d log V/d logN = 0 for the minimal point
N = V ). Anyway, since log V is an almost linear function of log N , log V ≈ a log N + b,
we could try to approximate parameters x, ρ0 using just linear regression for empirical
data (log N, log V ). In fact, we have

x − 1

x
≈ a, log Nmin ≈ a log Nmin + b, ρ0x = Nmin, (18)

which can be easily solved for x, Nmin, ρ0 given a, b.
In order to compute λ as the function of N , ρ0, and x, it is necessary to find the inverse

of e(λ) = λ1/(λ−1). The inverse of e(λ) is not a closed-form function of its argument but
there is some good elementary approximation, which is presented in the appendix.

3 Comparison with empirical data

In order to compare our theoretical model with natural language data, we have collected
a selection of texts of various sizes which we downloaded from Project Gutenberg website
– http://www.promo.net/pg/index.html. The full selection is listed in table 1. All
the texts are raw English texts, in which we chose the types w to be the graphical words
(word-forms) rather than their (disambiguated) lemmas. We ignored the punctuation and
turned all word-forms into lower-case. In this way, all text processing and data plotting
could be done automatically in several seconds on a PC using simple scripts in Perl and
Gnuplot.
For the given e-text data, we have estimated the parameters of our model for two

cases: (1) ρ0 = 1/x (only x is estimated), (2) ρ0 is variable (both x and ρ0 are estimated).
The resulting values of parameters and implied characteristic constants x/(x − 1), Nmin,
N0 are given in table 2. The estimation of the parameters was done using least-square fit
for plot (log N, log V ) with nonlinear theoretical curves given by chain of formulas (15),
(24), (16). (Slightly better than linear regression (18).) The plot of the data including
the fits is given in figure 4.
In figure 4, we can see that the model with variable ρ0 accords with the data consis-

tently better than ρ0 = 1/x. For this model, the ratio of predicted and actual vocabulary
size V is almost always about 1, independently of the text size N . For none of the observed
data points, the ratio exceeds the range [0.5, 2] (see figure 7).
The curious feature of the model with variable ρ0 is that it predicts that there is

a minimal text length Nmin ≈ 159. Nevertheless, all e-texts considered as data were well-
formed literary texts, so this statement need not be so absurd, as it might appear i.e. for
random typing texts.
The parameters of the theoretical model for both variable and fixed ρ0 were estimated

using (log N, log V ) plot only. When we compare the rank-count distributions implied
by the same parameters and the empirical rank-count distributions, we might observe
greater departures. In fact, it is so. The model with ρ0 = 1/x seems to predict better the
frequencies f(r) for lower ranks r (figures 5, 6). Figure 8 confirms our rational assumption
that f(1)/N should be roughly constant across the texts of any length. Nevertheless, the
model with variable ρ0 still better reflects the variability of the power-law tail of f(r) for
the highest ranks r (figure 6 as opposed to 5).
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Title Author Text size N Vocab. size V
Peach Blossom Shangri-la T. Yuan Ming 735 332
A Modest Proposal J. Swift 3427 1092
On the Brain T. H. Huxley 4017 1078
The Lake Gun J. F. Cooper 5328 1488
Song Book of Quong Lee... T. Burke 5440 1612
The Adventure of the Dying... A. Conan Doyle 5857 1419
The Adventure of the Red Circle A. Conan Doyle 7407 1668
Everybody’s Business... D. Defoe 7483 1766
Why Go to College? A. F. Palmer 7847 1915
Dickory Cronke D. Defoe 10426 2138
The Princess de Montpensier Lafayette 10904 1881
Bickerstaff-Partridge Papers J. Swift 13218 2928
The Categories Aristotle 14488 1394
The New Atlantis F. Bacon 15769 2750
The City of the Sun T. Campanella 16855 3239
Alice in Wonderland L. Carroll 27870 2868
Through the Looking-Glass L. Carroll 31055 3059
The Battle of the Books... J. Swift 38944 6068
Utopia T. More 43633 4624
Around the World in 80 Days J. Verne 63290 6853
Erewhon S. Butler 84717 7800
Five Weeks in a Balloon J. Verne 93252 8524
Eight Hundred Leagues... J. Verne 95568 8210
20,000 Leagues Under the Sea J. Verne 100598 8294
Gulliver’s Travels J. Swift 104650 8191
One of Ours W. Cather 126621 10049
Life of William Carey G. Smith 143849 11072
Memoirs Comtesse du Barry 160790 10278
The Mysterious Island J. Verne 194213 9743
The Journal to Stella J. Swift 238787 10642
Critical & Historical Essays Macaulay 296553 18684
The Descent of Man C. Darwin 308171 14086
Mark Twain, A Biography A. B. Paine 515597 22572
First Folio/35 Plays W. Shakespeare 820016 30820
The Complete Memoirs J. Casanova 1262287 24093

Table 1: The choice of 35 e-texts from Project Gutenberg.

ρ0 = 1/x ρ0 variable
x 11.477 3.1193
x/(x − 1) 1.0954 1.4719
ρ0 0.087132 51.108
Nmin 1 159.42
N0 96456. 3607.6

Table 2: The parameters resulted for the e-texts in two estimation schemes.
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Figure 4: Plots of vocabulary size V as function of text size N for chosen e-texts.
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Figure 5: Plots of counts f(r) against ranks r for the following texts: Peach Blossom
Shangri-la, N = 735; A Modest Proposal, N = 3427; The Adventure of the Red Circle,
N = 7407; Through the Looking-Glass, N = 31 055; Erewhon, N = 84 717; The Descent
of Man, N = 308 171; The Complete Memoirs, N = 1 262 287 (points growing respec-
tively). The smooth curves stand for the count distributions predicted by our model with
parameters x, ρ0 as in the left column of table 2 (ρ0 = 1/x).
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Figure 6: Plots of counts f(r) against ranks r for the following texts: Peach Blossom
Shangri-la, N = 735; A Modest Proposal, N = 3427; The Adventure of the Red Circle,
N = 7407; Through the Looking-Glass, N = 31 055; Erewhon, N = 84 717; The Descent
of Man, N = 308 171; The Complete Memoirs, N = 1 262 287 (points growing respec-
tively). The smooth curves stand for the count distributions predicted by our model with
parameters x, ρ0 as in the right column of table 2 (variable ρ0).
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Figure 7: Plots of ratio of empirical vocabulary size V for chosen e-texts to the predicted
vocabulary size Vpredicted given by our model with parameters x, ρ0 as in the right column
of table 2 (variable ρ0). The constant lines correspond to V/Vpredicted = 0.5, 1, 2.
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Figure 8: The relative count of the most frequent word against the predicted f(1)/N and
the text size N for the whole selection of e-texts.

4 Conclusions

In this article, we have presented a very simple improvement of classical Mandelbrot-
Zipf’s law for natural language texts. The improvement was done not by introducing new
parameters, but by letting the present ones vary with respect to the text size. The newly
introduced constraint for the variability of parameters was that the relative counts of the
most frequent words be constants independent of the text size.
The resulting model does not fit the data so well as much more complex LNRE models

(Baayen, 2001; Orlov, 1982), but it still reproduces Mandelbrot’s exponent 1 + ε < 1 for
text length N < N0 and 1+ε > 1 for N > N0. The model also accords with empirical data
qualitatively in several other aspects. Here, we have discussed theoretically the probably
most complex phenomena in rank-count distribution which are still explainable by simple
Mandelbrot-Zipf’s formula (2).
Still, we have not checked if the quantitative departures of our model can be decreased

if approximations (5), (6), assuming falsely ρ � 1, were replaced by exact summations
and equalities. In this case, we lose pretty closed-form formulas but maybe we could
obtain a better fit for self-consistent expressions.

A Approximating the inverse of e(λ) = λ1/(λ−1)

The function defined by (13) is related to the definition of base e of natural logarithm.
Actually,

e(1) = e. (19)

Function e(λ) is an easily computable function of λ. Unfortunately the inverse is not
true. Quantity λ is not a simply computable function of e(λ). There is, however, an
easily invertible and good approximation ē(λ),

ē(λ) = 1 +
e − 2√

λ
+

1

λ
. (20)

One can define the relative error of ē(λ) as

b̄(λ) =
ē(λ) − e(λ)

ē(λ)
. (21)
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Function e(λ) has domain λ ∈ {0,∞}. In this domain, the following substitution is
convenient

λ =
1 − u

1 + u
, (22)

where u ∈ {−1, 1}. Let b(u) = b̄(λ). Then b(u) = 0 for u = −1, 0, 1. (b(u) for u = −1, 1
is defined by the corresponding limits.) Explicitly

b(u) = 1 −
[

1−u
1+u

]

−1/2u

√

1−u
1+u

+ (e − 2) +
√

1+u
1−u

, (23)

so b(u) = b(−u). Furthermore, looking at the plot of b(u) (Figure 9) one can see that
0 ≤ b(u) < 0.04. Resuming, ē(λ) is a good simple approximation of λ1/(λ−1).
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Figure 9: The plot of b(u).

In order to find λ for given ē(λ), one sees that definition (20) is a quadratic equation
for 1/

√
λ and it can be immediately solved,

λ =
4

[

2 − e +
√

e2 − 4e + 4ē(λ)
]2 . (24)

In formula (24), the one of two solutions was chosen which reproduces λ = 1 for ē(λ) = e.
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