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Introduction Correctness Approach 1 Approach 2 WFS End Semantics

Outline
proving correctness of normal logic programs

I Introduction (. . . , semantics, specifications, correctness)
I Proving correctness, approach 1
I Proving correctness, approach 2
I Comparison with proving correctness w.r.t.

the well-founded semantics
I Summary
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Introduction

Reasoning about program properties

Correctness
(program results compatible with the specification)

In LP (logic programming), also
Completeness

(the program produces everything required by the specification)

This work – correctness of normal logic programs
(programs with negation as finite failure)
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Note (on logic)

Natural to use a 4-valued logic (of Belnap)
t – success
f – failure
u – divergence
tf – success or failure

Will be encoded in the standard 2-valued logic.
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Semantics
NAF, NAFF (negation as finite failure), SLDNF-resolution
We have it in Prolog when sound usage of negation:

A fails → ¬A succeeds
A succeeds with a most general answer

→ failure of ¬A
otherwise → floundering

Declarative semantics [Kunen]. 3-valued logic (t,f ,u).

comp(P ) |=3 Q for answers Q
comp(P ) |=3 ¬Q for failed queries Q of P

Th.: comp(P ) |=3 F iff T3P ↑ n |=3 F
m

T4P ↑ n |=4 F

for some n < ω
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Program correctness, specifications
Without negation

Specification: an Herbrand interpretation St ∈ HB
– the ground atoms allowed to be true

With negation
Specification: (St , Snf ) ∈ HB2

St – as above
Snf – atoms not allowed to be false

St︷ ︸︸ ︷
Snf︷ ︸︸ ︷

HB

 t tf f

︸ ︷︷ ︸
success

︸ ︷︷ ︸
failure

St \ Snf – tf
St ∩ Snf – t
HB \ Snf \ St – f
Snf \ St – u
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Program correctness, specifications
Without negation

Specification: an Herbrand interpretation St ∈ HB
– the ground atoms allowed to be true

P correct w.r.t. St : St |= Q for each answer Q of P .

Proving correctness [Clark’78]
Th.: P correct w.r.t. St if St |= P .

Obvious, important, neglected
Applicable in practice +

With negation
Specification: (St ,Snf ) ∈ HB2
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Specification, example

A specification for a program defining a list membership predicate m
is (Stm, Snfm), where

Snfm = {m(ei, [e1, . . . , en]) ∈ HB | 1 ≤ i ≤ n },
Stm = Snfm ∪ {m(e, t) ∈ HB | t is not a list }.

So
m(e, t) may be true when if t is a list then e is a member of t
m(e, t) may be false when it is not of the form m(ei, [e1, . . . , en])

(1 ≤ i ≤ n)
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Correctness, definition
St︷ ︸︸ ︷

Snf︷ ︸︸ ︷
HB

 t tf f

︸ ︷︷ ︸
success

︸ ︷︷ ︸
failure

P correct w.r.t. (St , Snf ) :
for each atom A
A is an answer of P

⇒ St |= A
A fails ⇒ Snf |= ¬A

Non atomic queries?
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Correctness, definition
St︷ ︸︸ ︷

Snf︷ ︸︸ ︷
HB

 t tf f

︸ ︷︷ ︸
success

︸ ︷︷ ︸
failure

P correct w.r.t. (St , Snf ) :
for each atom A
A is an answer of P

⇒ St |= A
A fails ⇒ Snf |= ¬A

Non atomic queries?
Notation: New predicate symbol p’ for each p

For programs, queries, . . .
Q′ – Q with p p′ in each negative literal
Q′′ – Q with p p′ in each positive literal

For interpretations
St ’ – St with p p′ in each literal
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Correctness, definition
St︷ ︸︸ ︷

Snf︷ ︸︸ ︷
HB

 t tf f

︸ ︷︷ ︸
success

︸ ︷︷ ︸
failure

P correct w.r.t. (St , Snf ) :
for each atom A
A is an answer of P

⇒ St |= A
A fails ⇒ Snf |= ¬A

Non atomic queries?
P correct w.r.t. (St , Snf ) : For each query Q

St ∪ Snf ′ |= Q′ if Q is an answer of P
St ∪ Snf ′ |= ¬Q′′ if Q fails

Formally: comp(P ) |=3 Q ⇒ St ∪ Snf ′ |= Q′

comp(P ) |=3 ¬Q ⇒ St ∪ Snf ′ |= ¬Q′′
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A detail for the next slide
St ∪ Snf ′ |= ~L′′ means that in ~L

each positive literal Li ∈ Snf
each negative literal Lj = ¬Aj : Aj 6∈ St
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Proving correctness. Approach 1
Df.: Atom A ∈ HB weakly covered by clause C w.r.t. spec = (St , Snf )

if ∃ a ground instance A← ~L of C such that St ∪ Snf ′ |= ~L′′.
Informally: A can be produced by C out of literals which cannot be false

(according to spec).

Df.: A weakly covered by program P if covered by some C ∈ P .
Intuition: Such A cannot be made false.

Th. (Cor. 1): P is correct w.r.t. spec = (St , Snf ) if
1. St ∪ Snf ′ |= P ′, and
2. each atom A ∈ Snf is weakly covered by P w.r.t. spec.

Similarities with methods for programs without negation
1. – condition for correctness
2. – part of condition for completeness
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Example
Program SS:

ss(L,M)← ¬nss(L,M). % subset
nss(L,M)← m(X,L),¬m(X,M). % non subset
m(X, [X|L]).
m(X, [Y |L])← m(X,L).

% member

Specification (St , Snf ),
St = Stss ∪ Stnss ∪ Stm, Snf = Snfss ∪ Snfnss ∪ Snfm,

Stss = { ss(l,m) ∈ HB | l and m are lists→ l ⊆ m },
Snfss = { ss(l,m) ∈ HB | l and m are lists ∧ l ⊆ m },
Stnss = {nss(l,m) ∈ HB | l and m are lists→ l 6⊆ m },
Snfnss = {nss(l,m) ∈ HB | l and m are lists ∧ l 6⊆ m },
Stm = Snfm ∪ {m(e, t) ∈ HB | t is not a list }.
Snfm = {m(ei, [e1, . . . , en]) ∈ HB | 1 ≤ i ≤ n },
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Example (2)

Let us take the least obvious part of the proof.

C

′

= nss(L,M)← m(X,L),¬m

′

(X,M).

Stnss = {nss(l,m) ∈ HB | l and m are lists→ l 6⊆ m },
Snfm = {m(ei, [e1, . . . , en]) ∈ HB | 1 ≤ i ≤ n },
Stm = Snfm ∪ {m(e, t) ∈ HB | t is not a list }.

Showing 1. St ∪ Snf ′ |= C ′

Take a ground instance C ′θ = nss(l,m)← m(x, l),¬m′(x,m).
Assume the body is true, m(x, l) ∈ St , m′(x,m) 6∈ Snf ′.
l,m are lists ⇒ x ε l and x 6εm ⇒ l 6⊆ m

⇒ nss(l,m) ∈ Stnss.
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Example (3)

C = nss(L,M)← m(X,L),¬m(X,M).

Snfnss = {nss(l,m) ∈ HB | l and m are lists ∧ l 6⊆ m },
Snfm = {m(ei, [e1, . . . , en]) ∈ HB | 1 ≤ i ≤ n },
Stm = Snfm ∪ {m(e, t) ∈ HB | t is not a list }.

Showing 2. Each A ∈ Snfnss weakly covered by C .
Assume nss(l,m) ∈ Snfnss.
⇒ l,m are lists, l 6⊆ m ⇒ ∃x x ε l, x 6εm
nss(l,m)← m(x, l),¬m(x,m) is the required instance of C ,
as m(x, l) ∈ Snf , m(x,m) 6∈ St .
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Limitation of Approach 1

Some facts cannot be proved.
Roughly
– we prove correctness w.r.t. the least fixed point of T3P
– the semantics of P is given by comp(P ) |=3 , or T3P ↑ n

(n < ω)
Ex.: P : p← q(X).

q(s(X))← q(X).

Correct w.r.t. (St , Snf ) = (∅, {p}). ( p is u, each q(t) is f .)
The l.f.p. – everything is f
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Proving correctness. Approach 2
(Slightly modified w.r.t. the paper)

Introducing
level mappings, | | : HB ∪ ¬HB → N ∪ {ω},
restrictions on |L| and the levels of Li on which L depends

(inP ).
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Adjusted | |
Df.: | | adjusted to P and spec = (St , Snf ) if

1. for each A ∈ St ,

|A| ≤ 1 + min

{
max{|L| : L ∈ ~L}

∣∣∣∣ A← ~L ∈ ground(P ),
St ∪ Snf ′ |= ~L′

}
2. for each A ∈ HB \ Snf ,
|¬A| ≤

1 + max

{
min

{
|L|
∣∣∣∣L ∈ ~L,St ∪ Snf ′ |= (¬L)′

} ∣∣∣∣A← ~L ∈ ground(P )

}
,

3. for each A ∈ Snf \ St , |A| = |¬A| = ω.

(max ∅ = 0, min ∅ = ω)
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Sufficient condition. Approach 2
Th. (11): P correct w.r.t. spec = (St , Snf ) if
∃ | | adjusted to P, spec such that

1. ∀ A← ~L ∈ ground(P ),
if St ∪ Snf ′ |= ~L′ then A ∈ St or |A| = ω;

2. ∀A ∈ Snf ∀m ∈ N
∃A←~L ∈ ground(P ) ∀L ∈ ~L,
|L| > m or St ∪ Snf ′ |= L′′.

Ex. (12): Correctness of { p← q(X). q(s(X))← q(X).}
w.r.t. (St ,Snf ) = (∅, {p}).

1. holds trivially (clause bodies are false)

2. |q(si(u))| = i where u not of the form s(t)
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The well-founded semantics (WFS)
[Ferrand,Deransart’93]

| | into a well-ordered set (W,≺)

Th.: P correct w.r.t. spec = (St , Snf ) under WFS if

1. St ∪ Snf ′ |= P ′, and ← as in Th. Cor. 1

2. ∃ a level mapping | | : Snf → W

∀A ∈ Snf ∃A←~L ∈ ground(P )
2.1 St ∪ Snf ′ |= ~L′′, and ← as in Th. Cor. 1
2.2 for each positive literal L from ~L, |L| ≺ |A|. ← the difference

Ex.: P = {p← p}, spec = (St ,Snf ) = (∅, {p})

Correct under Kunen semantics, by Th. Cor. 1
Not correct under WFS; 2.2 does not hold
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Summary
I Normal programs, Kunen semantics (NAFF, SLDNF-resolution)

i.e. sound usage of negation in Prolog
I 4-valued logic encoded in standard 2-valued FOL
I Two sufficient conditions for program correctness

Th. Cor. 1 based on [D ,Miłkowska’05]
Th. Cor. 2 new

I Th. Cor. 1 can be
I seen as formalization of common sense reasoning
I (informally) applied in practice

I Future work (cooperation welcome)
I Proving program completeness
I Formalizing specifications and proofs
I Correctness for ASP (Answer Set Programs)

www.ipipan.waw.pl/~drabent/
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Thanks!
for your attention
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Note. A limitation

Specifications as used here cannot express that
all ground instances Qθ of Q are possible answers (of a program)
but Q is not.

(Such program/queries exist.)

Because
if I |= Qθ for each ground Qθ
then I |= Q

(Do we need this?)
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