On Correctness of Normal Logic Programs

Włodek Drabent

LOPSTR 2022 2022-09-23

Version 1.1 compiled October 5, 2022

イロト 不得 トイヨト イヨト 二日

Outline proving correctness of normal logic programs

- Introduction (..., semantics, specifications, correctness)
- Proving correctness, approach 1
- Proving correctness, approach 2
- Comparison with proving correctness w.r.t.

the well-founded semantics

イロト 不得 トイヨト イヨト 二日

Summary

Introduction

Reasoning about program properties

Correctness

(program results compatible with the specification)

In LP (logic programming), also Completeness

(the program produces everything required by the specification)

This work – correctness of normal logic programs (programs with negation as finite failure)

Note (on logic)

Natural to use a 4-valued logic (of Belnap)

- $t \ \ \text{success}$
- $\mathbf{f}~-~\mathsf{failure}$
- \mathbf{u} divergence
- $\mathbf{t}\mathbf{f}$ success or failure

Will be encoded in the standard 2-valued logic.

・ロト ・四ト ・ヨト ・ヨト

3

Semantics

Semantics

NAF, NAFF (negation as finite failure), SLDNF-resolution

We have it in Prolog

when sound usage of negation:

 $\begin{array}{rll} A \mbox{ fails } & \to & \neg A \mbox{ succeeds} \\ A \mbox{ succeeds with a most general answer} \\ & \to \mbox{ failure of } \neg A \\ \mbox{ otherwise } & \to \mbox{ floundering} \end{array}$

Declarative semantics [Kunen]. 3-valued logic (t,f,u). $comp(P) \models_3 Q$ for answers Q of P $comp(P) \models_3 \neg Q$ for failed queries Q

Th.: $comp(P) \models_3 F$ iff $T_{3P} \uparrow n \models_3 F$ for some $n < \omega$ \uparrow $T_{4P} \uparrow n \models_4 F$

Semantics

Semantics

NAF, NAFF (negation as finite failure), SLDNF-resolution We have it in Prolog when sound usage of negation:

 $\begin{array}{rll} A \mbox{ fails } & \to & \neg A \mbox{ succeeds} \\ A \mbox{ succeeds with a most general answer} \\ & \to & \mbox{ failure of } \neg A \\ \mbox{ otherwise } & \to & \mbox{ floundering} \end{array}$

Declarative semantics [Kunen]. 3-valued logic (t,f,u). $comp(P) \models_3 Q$ for answers Q of P $comp(P) \models_3 \neg Q$ for failed queries QTh.: $comp(P) \models_3 F$ iff $T3_P \uparrow n \models_3 F$ for some $n < \omega$ \uparrow $T4_P \uparrow n \models_4 F$

Program correctness, specifications

Without negation

Specification:

an Herbrand interpretation $St \in \mathcal{HB}$ – the ground atoms allowed to be true

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

FEI

Program correctness, specifications

Without negation

Specification:an Herbrand interpretation $St \in \mathcal{HB}$ - the ground atoms allowed to be true

P correct w.r.t. St: $St \models Q$ for each answer Q of P.

Proving correctness [Clark'78] Th.: *P* correct w.r.t. *St* if $St \models P$.

> Obvious, important, neglected Applicable in practice

Program correctness, specifications

Without negation

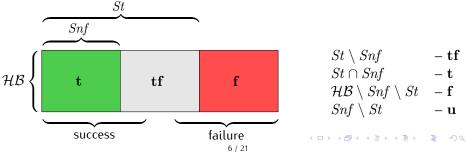
Specification:

an Herbrand interpretation $St \in \mathcal{HB}$ – the ground atoms allowed to be true

With negation

Specification:

 $(St, Snf) \in \mathcal{HB}^2$ St - as above Snf - atoms not allowed to be false



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Specification, example

A specification for a program defining a list membership predicate m is $(\mathit{St}_m, \mathit{Snf}_m)\text{, where}$

$$Snf_m = \{ m(e_i, [e_1, \dots, e_n]) \in \mathcal{HB} \mid 1 \le i \le n \},\$$

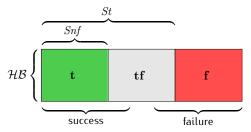
$$St_m = Snf_m \cup \{ m(e, t) \in \mathcal{HB} \mid t \text{ is not a list} \}.$$

So

m(e,t) may be true when if t is a list then e is a member of t m(e,t) may be false when it is not of the form $m(e_i, [e_1, \dots, e_n])$ $(1 \le i \le n)$

Ex. specification Def. correctness

Correctness, definition



 $\begin{array}{l} P \text{ correct w.r.t. } (St, Snf):\\ \text{for each atom } A\\ A \text{ is an answer of } P\\ \Rightarrow St \models A\\ A \text{ fails } \Rightarrow Snf \models \neg A \end{array}$

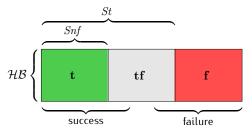
ヘロト ヘヨト ヘヨト ヘヨト

э

Non atomic queries?

Ex. specification Def. correctness

Correctness, definition



 $\begin{array}{l} P \text{ correct w.r.t. } (St, Snf):\\ \text{for each atom } A\\ A \text{ is an answer of } P\\ \Rightarrow St \models A\\ A \text{ fails } \Rightarrow Snf \models \neg A \end{array}$

ヘロト 人間 ト 人 ヨト 人 ヨトー

Non atomic queries?

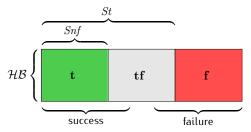
Notation: New predicate symbol p' for each pFor programs, queries, ...

Q' - Q with $p \rightsquigarrow p'$ in each negative literal Q'' - Q with $p \rightsquigarrow p'$ in each positive literal For interpretations

St' - St with $p \rightsquigarrow p'$ in each literal

Ex. specification Def. correctness

Correctness, definition



 $\begin{array}{l} P \text{ correct w.r.t. } (St, Snf):\\ \text{for each atom } A\\ A \text{ is an answer of } P\\ \Rightarrow St \models A\\ A \text{ fails } \Rightarrow Snf \models \neg A \end{array}$

Non atomic queries?

 $\begin{array}{ll} P \text{ correct w.r.t. } (St,Snf) \colon & \text{For each query } Q \\ St \cup Snf' \models Q' \text{ if } Q \text{ is an answer of } P \\ St \cup Snf' \models \neg Q'' \text{ if } Q \text{ fails} \end{array}$

Formally:

$$\begin{array}{rcl} & comp(P) \models_{3} Q & \Rightarrow & St \cup Snf' \models Q' \\ & comp(P) \models_{3} \neg Q & \Rightarrow & St \cup Snf' \models \neg Q'' \end{array}$$

A detail for the next slide $St \cup Snf' \models \vec{L}''$ means that in \vec{L} each positive literal $L_i \in Snf$ each negative literal $L_j = \neg A_j$: $A_j \notin St$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Proving correctness. Approach 1

- Df.: Atom $A \in \mathcal{HB}$ weakly covered by clause C w.r.t. spec = (St, Snf)if \exists a ground instance $A \leftarrow \vec{L}$ of C such that $St \cup Snf' \models \vec{L}''$. Informally: A can be produced by C out of literals which cannot be false (according to *spec*).
- **Df**.: A weakly covered by program P if covered by some $C \in P$. Intuition: Such A cannot be made false.
- Th. (Cor. 1): P is correct w.r.t. spec = (St, Snf) if 1. $St \cup Snf' \models P'$, and 2. each atom $A \in Snf$ is weakly covered by P w.r.t. spec.

Similarities with methods for programs without negation

1. – condition for correctness

2. – part of condition for completeness

Proving correctness. Approach 1

- Df.: Atom $A \in \mathcal{HB}$ weakly covered by clause C w.r.t. spec = (St, Snf)if \exists a ground instance $A \leftarrow \vec{L}$ of C such that $St \cup Snf' \models \vec{L}''$. Informally: A can be produced by C out of literals which cannot be false (according to *spec*).
- **Df**.: A weakly covered by program P if covered by some $C \in P$. Intuition: Such A cannot be made false.
- Th. (Cor. 1): P is correct w.r.t. spec = (St, Snf) if 1. $St \cup Snf' \models P'$, and 2. each atom $A \in Snf$ is weakly covered by P w.r.t. spec.

Similarities with methods for programs without negation

- 1. condition for correctness
- 2. part of condition for completeness

Example

Program SS:

$$\begin{array}{ll} ss(L,M) \leftarrow \neg \, nss(L,M). & \mbox{ $\%$ subset} \\ nss(L,M) \leftarrow m(X,L), \neg \, m(X,M). & \mbox{ $\%$ non subset} \\ m(X,[X|L]). & \mbox{ $\%$ member} \\ m(X,[Y|L]) \leftarrow m(X,L). & \mbox{ $\%$ member} \end{array}$$

Specification (St, Snf),

 $\begin{array}{rcl} St = St_{ss} \cup St_{nss} \cup St_m, & Snf = Snf_{ss} \cup Snf_{nss} \cup Snf_m, \\ St_{ss} &= \{ss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \subseteq m\}, \\ Snf_{ss} &= \{ss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \land l \subseteq m\}, \\ St_{nss} &= \{nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \not\subseteq m\}, \\ Snf_{nss} &= \{nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \land l \not\subseteq m\}, \\ St_m &= Snf_m \cup \{m(e,t) \in \mathcal{HB} \mid t \text{ is not a list}\}. \\ Snf_m &= \{m(e_i, [e_1, \dots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n\}, \end{array}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

э

Let us take the least obvious part of the proof.

$$\begin{array}{lll} C &=& nss(L,M) \leftarrow m(X,L), \neg \ m \ (X,M). \\ St_{nss} &=& \{ \ nss(l,m) \in \mathcal{HB} \mid l \ \text{and} \ m \ \text{are lists} \rightarrow l \not\subseteq m \, \}, \\ Snf_m &=& \{ \ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \, \}, \\ St_m &=& Snf_m \cup \{ \ m(e,t) \in \mathcal{HB} \mid t \ \text{is not a list} \, \}. \end{array}$$

Showing 1. $St \cup Snf' \models C'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Let us take the least obvious part of the proof.

$$\begin{array}{lll} C' &=& nss(L,M) \leftarrow m(X,L), \neg m'(X,M). \\ St_{nss} &=& \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \not\subseteq m \}, \\ Snf_m &=& \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &=& Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$$

Showing 1. $St \cup Snf' \models C'$

Let us take the least obvious part of the proof.

$$\begin{array}{lll} C' &=& nss(L,M) \leftarrow m(X,L), \neg \, m'(X,M). \\ St_{nss} &=& \{ \, nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \not\subseteq m \, \}, \\ Snf_m &=& \{ \, m(e_i,[e_1,\ldots,e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \, \}, \\ St_m &=& Snf_m \cup \{ \, m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \, \}. \end{array}$$

Showing 1. $St \cup Snf' \models C'$

Let us take the least obvious part of the proof.

$$\begin{array}{lll} C' &=& nss(L,M) \leftarrow m(X,L), \neg m'(X,M). \\ St_{nss} &=& \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \not\subseteq m \}, \\ Snf_m &=& \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &=& Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$$

Showing 1. $St \cup Snf' \models C'$

Let us take the least obvious part of the proof.

$$C' = nss(L, M) \leftarrow m(X, L), \neg m'(X, M).$$

$$St_{nss} = \{ nss(l, m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \rightarrow l \not\subseteq m \},$$

$$Snf_m = \{ m(e_i, [e_1, \dots, e_n]) \in \mathcal{HB} \mid 1 \le i \le n \},$$

$$St_m = Snf_m \cup \{ m(e, t) \in \mathcal{HB} \mid t \text{ is not a list} \}.$$

Showing 1. $St \cup Snf' \models C'$

$$C = nss(L, M) \leftarrow m(X, L), \neg m(X, M).$$

$$\begin{array}{lll} Snf_{nss} &=& \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists } \wedge l \not\subseteq m \}, \\ Snf_m &=& \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &=& Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$$

Showing 2. Each $A \in Snf_{nss}$ weakly covered by C.

Assume $nss(l,m) \in Snf_{nss}$. $\Rightarrow l,m$ are lists, $l \not\subseteq m \Rightarrow \exists x \ x \in l, x \notin m$ $nss(l,m) \leftarrow m(x,l), \neg m(x,m)$ is the required instance of C, as $m(x,l) \in Snf$, $m(x,m) \notin St$.

$$C = nss(L, M) \leftarrow m(X, L), \neg m(X, M).$$

Snf_{nss}	=	$\{nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists} \land l \not\subseteq m\},\$
Snf_m	=	$\{ m(e_i, [e_1, \dots, e_n]) \in \mathcal{HB} \mid 1 \le i \le n \},\$
St_m	=	$Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list } \}.$

Showing 2. Each $A \in Snf_{nss}$ weakly covered by C.

Assume $nss(l,m) \in Snf_{nss}$. $\Rightarrow l,m$ are lists, $l \not\subseteq m \Rightarrow \exists x \ x \in l, x \notin m$ $nss(l,m) \leftarrow m(x,l), \neg m(x,m)$ is the required instance of C, as $m(x,l) \in Snf$, $m(x,m) \notin St$.

$$C = nss(L, M) \leftarrow m(X, L), \neg m(X, M).$$

$$\begin{array}{lll} Snf_{nss} &=& \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists } \wedge l \not\subseteq m \}, \\ Snf_m &=& \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &=& Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$$

Showing 2. Each $A \in Snf_{nss}$ weakly covered by C.

Assume $nss(l,m) \in Snf_{nss}$. $\Rightarrow l,m$ are lists, $l \not\subseteq m \Rightarrow \exists x \ x \in l, x \notin m$ $nss(l,m) \leftarrow m(x,l), \neg m(x,m)$ is the required instance of C, as $m(x,l) \in Snf$, $m(x,m) \notin St$.

$$C = nss(L, M) \leftarrow m(X, L), \neg m(X, M).$$

 $\begin{array}{lll} Snf_{nss} &=& \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists } \wedge l \not\subseteq m \}, \\ Snf_m &=& \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &=& Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$

Showing 2. Each $A \in Snf_{nss}$ weakly covered by C.

Assume $nss(l,m) \in Snf_{nss}$. $\Rightarrow l,m$ are lists, $l \not\subseteq m \Rightarrow \exists x \ x \in l, x \notin m$ $nss(l,m) \leftarrow m(x,l), \neg m(x,m)$ is the required instance of C, as $m(x,l) \in Snf$, $m(x,m) \notin St$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$C = nss(L, M) \leftarrow m(X, L), \neg m(X, M).$$

$$\begin{array}{lll} Snf_{nss} &= \{ nss(l,m) \in \mathcal{HB} \mid l \text{ and } m \text{ are lists } \wedge l \not\subseteq m \}, \\ Snf_m &= \{ m(e_i, [e_1, \ldots, e_n]) \in \mathcal{HB} \mid 1 \leq i \leq n \}, \\ St_m &= Snf_m \cup \{ m(e,t) \in \mathcal{HB} \mid t \text{ is not a list} \}. \end{array}$$

Showing 2. Each $A \in Snf_{nss}$ weakly covered by C.

Assume $nss(l,m) \in Snf_{nss}$. $\Rightarrow l,m$ are lists, $l \not\subseteq m \Rightarrow \exists x \ x \in l, x \notin m$ $nss(l,m) \leftarrow m(x,l), \neg m(x,m)$ is the required instance of C, as $m(x,l) \in Snf$, $m(x,m) \notin St$.

Limitation of Approach 1

Some facts cannot be proved.

Roughly

- we prove correctness w.r.t. the least fixed point of $T3_P$
- the semantics of P is given by $comp(P) \models_3$, or $T3_P \uparrow n$

 $(n < \omega)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Ex.: P: $p \leftarrow q(X)$. $q(s(X)) \leftarrow q(X)$.

Correct w.r.t. $(St, Snf) = (\emptyset, \{p\})$. (*p* is **u**, each q(t) is **f**.) The l.f.p. – everything is **f**

Proving correctness. Approach 2

(Slightly modified w.r.t. the paper)

Introducing level mappings, $| : \mathcal{HB} \cup \neg \mathcal{HB} \rightarrow \mathbb{N} \cup \{\omega\}$, restrictions on |L| and the levels of L_i on which L depends (in P).

Adjusted | |

Df.: | | **adjusted** to P and spec = (St, Snf) if

1. for each
$$A \in St$$
,
 $|A| \le 1 + \min \left\{ \max\{|L| : L \in \vec{L}\} \mid \begin{array}{c} A \leftarrow \vec{L} \in ground(P), \\ St \cup Snf' \models \vec{L}' \end{array} \right\}$

2. for each
$$A \in \mathcal{HB} \setminus Snf$$
,
 $|\neg A| \leq 1 + \max\left\{ \min\left\{ |L| \left| \begin{array}{c} L \in \vec{L}, \\ St \cup Snf' \models (\neg L)' \end{array} \right\} \middle| A \leftarrow \vec{L} \in ground(P) \right\} \right\}$,

3. for each $A \in Snf \setminus St$, $|A| = |\neg A| = \omega$.

 $(\max \emptyset = 0, \min \emptyset = \omega)$

Sufficient condition. Approach 2

Th. (11): P correct w.r.t. spec = (St, Snf) if $\exists \mid \mid$ adjusted to P, spec such that

1.
$$\forall A \leftarrow \vec{L} \in ground(P)$$
,
if $St \cup Snf' \models \vec{L}'$ then $A \in St$ or $|A| = \omega$;

2.
$$\forall A \in Snf \quad \forall m \in \mathbb{N}$$

 $\exists A \leftarrow \vec{L} \in ground(P) \quad \forall L \in \vec{L},$
 $|L| > m \text{ or } St \cup Snf' \models L''.$

 $\begin{array}{ll} \mathsf{Ex.} \ (12): & \mathsf{Correctness} \ \mathsf{of} \ \{ \ p \leftarrow q(X). \ \ q(s(X)) \leftarrow q(X). \} \\ & \mathsf{w.r.t.} \ \ (St, Snf) = (\emptyset, \{p\}). \end{array}$

- 1. holds trivially (clause bodies are false)
- 2. $|q(s^i(u))| = i$ where u not of the form s(t)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ●

The well-founded semantics (WFS) [Ferrand,Deransart'93]

| | into a well-ordered set (W, \prec)

Th.: P correct w.r.t. spec = (St, Snf) under WFS if

- 1. $St \cup Snf' \models P'$, and \leftarrow as in Th. Cor. 1
- 2. \exists a level mapping $| : Snf \to W$ $\forall A \in Snf \ \exists A \leftarrow \vec{L} \in ground(P)$ 2.1 $St \cup Snf' \models \vec{L}''$, and \leftarrow as in Th. Cor. 1 2.2 for each positive literal L from \vec{L} , $|L| \prec |A|$. \leftarrow the difference

Ex.:
$$P = \{p \leftarrow p\}, spec = (St, Snf) = (\emptyset, \{p\})$$

Correct under Kunen semantics, by Th. Cor. 1 Not correct under WFS; 2.2 does not hold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The well-founded semantics (WFS) [Ferrand,Deransart'93]

| | into a well-ordered set (W, \prec)

Th.: P correct w.r.t. spec = (St, Snf) under WFS if

- 1. $St \cup Snf' \models P'$, and \leftarrow as in Th. Cor. 1
- 2. \exists a level mapping $| : Snf \to W$ $\forall A \in Snf \quad \exists A \leftarrow \vec{L} \in ground(P)$ 2.1 $St \cup Snf' \models \vec{L}''$, and \leftarrow as in Th. Cor. 1 2.2 for each positive literal L from \vec{L} , $|L| \prec |A|$. \leftarrow the difference

$$\mathsf{Ex.:}\ P = \{p \leftarrow p\},\ spec = (St, Snf) = (\emptyset, \{p\})$$

Correct under Kunen semantics, by Th. Cor. 1 Not correct under WFS; 2.2 does not hold

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

Summary

- Normal programs, Kunen semantics (NAFF, SLDNF-resolution) i.e. sound usage of negation in Prolog
- 4-valued logic encoded in standard 2-valued FOL
- Two sufficient conditions for program correctness Th. Cor. 1 based on [D_,Miłkowska'05]

Th. Cor. 2 new

- Th. Cor. 1 can be
 - seen as formalization of common sense reasoning
 - (informally) applied in practice
- Future work (cooperation welcome)
 - Proving program completeness
 - Formalizing specifications and proofs
 - Correctness for ASP (Answer Set Programs)

```
www.ipipan.waw.pl/~drabent/
```

・ロト・日本・ヨト・ヨー うらぐ

Thanks! for your attention

▲□▶ ▲圖▶ ▲理▶ ▲理▶

E 990

Note. A limitation

Specifications as used here cannot express that

all ground instances $Q\theta$ of Q are possible answers (of a program) but Q is not.

(Such program/queries exist.)

Because

(Do we need this?)