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ABSTRACT: Completeness of the inductive assertion methed for
logic programs is shown under an assumption that the assertion
metalanguage of the method is expressive encugh.

The inductive assertion method C(IAM) for logic programs was
introduced in [DM11]. [(DM21, {DM3] are improved and updated
versions of the initial report. These papers do not discuss the
completeness of the method. In this paper a kind of relative
completeness is shown.

IAM is complete provided that the metalanguage of assertions is
expressive enough. A sufficient condition for this is that any
recursively enumerable set C(relation? can be described by a
precondition (postconditiond in this language. The expressive
power of the language depends on the set of predicates and
functions used.

Below we use the definitions of [DM3]1 Cor ([DM11, I[DM21>. The
presentation is informal., as the metalanguage of assertions of IAM
is not defined formally.

IAM is a method of proving Cpartial) correctness of asserted logic
programs. If the wverification condition CVC) of the method
CTheorem 4.3 of [DM3]> is satisfied then the program is correct.
VC is expressed in semantic terms. It refers to the facts true in
a fixed interpretation domain. The domain is that of terms with
relations of equality, subterm etc and functions of term
construction, term selection etc. As natural number arithmetics
can be modelled in this domain, there does not exist a finite set
of axioms and rules of inference that make possible deriving all
Cand only) these facts.

The question of completeness concerns the scope of applicability
of the method C(under which circumstances it can be succesfully
appliedd [Apt p. 437, 2.7 par.1]. The notion of completeness of a
proof method refers to the ability of the method to prove any fact
which is expressible in the language of the method provided the
fact is true in the class of interpretations under consideration.
Of course it is not the case that any correct asserted program
satisfies VC. Thus not every correct asserted program can be
proven correct using the method.



Example of such program:

{= pCXD, gC¥XD.
pC 7.

p : pre true; post true
q : pre ‘q1=7; post true

Obviously, the verification condition does not hold for the goal
clause due to a too weak postcondition for p. Changing the
postcondition for p to pi=7 we obtain an asserted program that can

be proven correct using IAM.

Let us introduce some definitions. An assertion p : pre E; post F

is stronger than p : pre El; post Fl iff E implies El and F

implies Fl Cin the fixed interpretation of functors and predicate
symbols of the metalanguage of assertions as described in [DM31,
section 2).

A set A of assertions is stronger than a set B of assertions

if (1> the assertions in A CBD> are for distinct predicate
symbols and (¢2) for every assertion @ : pre El; post Fl of B
there exists an assertion p : pre E; post F of A such that

£ : pre E; post F is stronger than p : pre El; post Fl'
Now, IAM is complete in the following sense provided that the
metal anguage of assertions is expressive enough:

PROFPOSI TION

Let PUB be a correct asserted program where P is a set of clauses
and B a set of assertions. Then there exists a set of assertions 4
stronger than B such that Pud satisfies the verification condition
of TAM. [Thus the correctness of PuAd is provable by I1AMI.

Proof

Let Denr be the set of all the SLD-derivations of P. For each p
take ACpd - the set of all call patterns (ie. selected subgoals)
of p occuring in Der and RCpd - the set of all call -success pairs
of Der. Now let ECp) be a precondition satisfied exactly by
elements of ACpd and let FCp2 be a postcondition satisfied exactly
by elements of RC(pd. If EC(pd and F(p) exist in the metal anguge of
assertions then
A=< p : pre ECp>; post F(p2> | p occurs in P >

is the required set of assertions. It remains to show that Pu4d
satisfies verification condition VC.

Note first that if da,aod satisfies its postcondition Cfrom 43
then there exists an SLD-derivation 2 of P such that <{-a,G and
{=Geo are geoals of N C(where G iz an atom sequence). Hence for any
atom sequence H, for P with the initial goal exchanged for {(-a.H
there exists an SLD-derivation D’ such that <-Ho is a goal of D’.



VC consists of three implications. Their premises refer to an atom
b and a set of atom pairs that satisfy their postconditions. From
the reasoning above and the definitions of 4, R and of a valuation
sequence it follows that there exists an SLD-derivation for F
where & is a call pattern and these pairs are call-success pairs.
(We skip details of the comstruction.? The conclusions of these
implications refer to an atom or an atom pair. For each
implication this atom C(pair) is a call pattern Ccall-success pair)d
of the SLD-derivation exemplified above. Thus the atom C(paird
satisfies its pre- C(post-) condition and VC holds.

End of proof.

As ACpY> and R(pD are recursively enumerable, for EC(p) and F(pd to
exist it is sufficient that any recursively enumerable set is
expressible in the metalanguge.

Note that the reasoning above remains valid also for programs with
countably many goal clauses. CIAM is often used for a program with
a class of goals).

FUTURE WORK

The sufficient condition that any recursively enumerable set and
relation can be described in the metalanguage is rather strong. An
interesting question is weakening this condition by investigating
for which assertion (meta-)> languages 1AM is complete. This would
lead to a kind of completeness in the sense of Coock [Aptl. A
related problem is: for a given program P and a true assertion
for a predicate symbol in P find assertions for the remaining
predicate symbols such that VC holds (thus the correctness of the
resulting asserted program is provable by ITAM.
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