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ABSTRACT: We present an inductive assertion method for proving run-time prop-

erties of logic programs. The method could be seen as a logic programming coun-

terpart of the well-known approach of Floyd and Hoare for imperative programs.

The method concerns assertions assigned to program points and makes it possible to

prove that whenever the control reaches a program point the corresponding assertion

is satis�ed. We also show a way of augmenting the method to prove termination. An

assertion (assigned to a point in a program clause) describes a set of substitutions

(for the variables of the clause). Assertions may be not monotonic (i.e. not closed

under substitutions).

1 Introduction

We present a method of proving run-time properties of logic programs that are

executed with Prolog selection rule. By run-time properties we mean properties

of LD-derivations, such properties are in general not expressible in terms of the

declarative semantics. Examples of such properties are the bindings of program

variables at certain program points, or the actual form of procedure calls or successes

occurring during computation. The latter includes modes, avoiding occur-check,

correct usage of Prolog arithmetics, variable aliasing etc.

We describe the properties by assigning assertions to program points. Program

points are placed after every atom in the clauses of the program. An asserted

program is correct if each assertion is satis�ed whenever the control reaches the

corresponding program point. An assertion describes a set of substitutions, for a

correctly asserted program this set contains any substitution that may appear when

the corresponding program point is reached. It is important that assertions may be

not monotonic (i.e. not closed under substitutions). For instance an assertion may

state that variable X is bound to a non-ground term.

In our former work [DM88, Dra88] we proposed an inductive assertion method

in which assertions are assigned to procedures: to every predicate symbol there

corresponds a precondition and a postcondition

1

. The method presented here usually

requires more assertions but the veri�cation conditions (the elementary proofs to

be performed) are simpler. We believe that the two methods are complementary.

Some properties of interest cannot be (directly) expressed in terms of pre- and

postconditions for predicates. On the other hand this is a more natural way to

express many properties of interest.

A stimulus to undertake this work was the paper by Colussi and Marchiori

1

For other methods with assertions assigned to procedures, see [AM94]. They may be seen as

specializations the method of [DM88]. For a example applications of that method, see [Dra94] and

[RNP92].
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[CM91]. They also proposed an inductive assertion method with assertions assigned

to program points. However, their soundness theorem concerns only the �nal an-

swers. Hence, strictly speaking, that method does not deal with run-time properties.

In contrast, our soundness theorem concerns all program points of any derivations

(including failing and in�nite ones). The method presented here is also simpler. For

further comparisons, see Section 8.

In our work we consider LD-resolution, in other words de�nite logic programs

executed with Prolog selection rule (the leftmost atom �rst). Our method can be

easily extended to many build-in procedures of Prolog. It is independent from the

way the LD-tree is searched, so it is sound for Prolog, OR-parallelism with Prolog

selection rule, Prolog with the cut etc. (It does not take into account the pruning

of the LD-tree made by the cut).

Our method considers partial correctness (whenever a control point is reached

then the corresponding assertion holds). In Section 7 we augment it with proving

termination.

Run-time properties dealt with by our method include properties of the computed

answers. In particular they include properties of the S-semantics and declarative

properties. (By declarative we mean the semantics given by the notion of logical

consequence or by the least Herbrand model of the program).

It should be made clear what is the application domain of methods like the one

presented here. Run-time properties are in a sense of secondary importance for logic

programming. A substantial part of a programmer's work can be done referring to

the declarative properties only, together with reasoning about termination. Reason-

ing about declarative properties [Cla79, Hog81, Der93] is usually simpler than that

about run-time properties. So in most cases methods like ours are useful only when

one is interested in properties not expressible in terms of the declarative semantics.

We may suggest a slogan that such methods are mainly for non logical properties of

logic programs.

Our work may be seen as transferring to logic programming the well known

inductive assertion approach of Floyd and Hoare. This transfer is far from trivial

as the basic operations, respectively assignment and uni�cation, are substantially

di�erent. From the imperative programming point of view, uni�cation results in

sophisticated forms of aliasing of variables.

Veri�cation conditions for imperative programs concern properties of the seman-

tic domains of variables. For example to show that f6jxg x := x + 1 f2 6 jxg holds

one has to show that the veri�cation condition 6jx! 2 6 jx+ 1 is true in the domain

of integers. In contrast, veri�cation conditions in our method concern properties of

uni�cation in a domain of (possibly non ground) terms. We express such properties

in the form of Hoare triples. We do not discuss methods of proving veri�cation

conditions. An attempt is presented in [CM92] where the authors introduce a proof

system for the uni�cation.

The paper is organized as follows. We begin with introducing the notion of asser-

tions and of Hoare triples for uni�cation. Then we introduce the proof method, show

an example proof and prove the method's soundness. The following sections concern

proving termination, discussion of the related work and a proposed continuation of

this work.
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2 Preliminaries

We use the standard notation and terminology [Llo87, Apt90]. We will use Pro-

log syntax in the examples. When referring to the language of programs, s; t will

usually stand for terms, a; b; c for constants, f; g for function symbols, x; y; z; v for

variables, p; q for predicate symbols, A;B;H for atoms. Subscripts may be used

if necessary. Over-lining will be used to denote a (�nite) sequence of objects. For

instance x is an abbreviation for x

1

; : : : ; x

n

for some integer n � 0, p(t) abbreviates

p(t

1

; : : : ; t

m

) (where m is the arity of p), s = t abbreviates s

1

= t

1

; : : : ; s

n

= t

n

and fx=t g abbreviates fx

1

=t

1

; : : : ; x

n

=t

n

g (for some n � 0). Sometimes we do not

distinguish between a sequence and the corresponding set (and for instance write x

for fx

1

; : : : ; x

n

g).

Vars(E) will denote the set of variables occurring in a syntactic construct (ex-

pression or substitution) E. The domain of a substitution � will be denoted by

Domain(�). The restriction of a substitution � to a set of variables S will be de-

noted �j

S

. For an expression E, we will abbreviate �j

Vars(E)

as �j

E

. By a renaming

we mean a substitution fx=yg where y is a permutation of x.

3 Assertions

Assertions are �rst order logical formulae that describe sets of states. It is a basic

concept of most approaches to prove correctness of imperative programs. A state is a

mapping of program variables into their values. In the context of logic programming

such mapping is just a substitution.

To formalize the notion of assertions one has to de�ne their language: �x its

predicate and function symbols together with their �xed \standard" interpretation.

The domain of the interpretation is a suitable domain of terms and substitutions

(possibly augmented with natural numbers etc.). Sometimes we will refer to the

language of assertions as to the metalanguage and to the language of logic programs

under consideration as to the object language. For an assertion I and a substitution

� we will write j=

�

I or just j= I� if I is true in the �xed interpretation and the

valuation �. We will also say \I holds for �" or \I� is true".

We will not introduce the metalanguage of assertions in a formal way. We assume

that:

� The set of variables of the metalanguage is that of the object language (and

is in�nite).

� The function and predicate symbols of the object language are function sym-

bols of the metalanguage. They are interpreted as themselves. Some other

function symbols will be used in assertions, for example arithmetic operators

+;�; etc. Their interpretation is as usual.

� The predicate symbols are =, var, ground, : : : . Their interpretation is as given

below. New predicates may be added when needed.

var(t)� is true i� term t� is a variable.
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ground(t)� is true i� term t� is a ground.

disjoint(t; s)� is true i� t� and s� have no common variable.

free(x)� is true i� x� is a tuple of distinct variables.

= denotes equality: j=

�

t= s i� t� and s� are the same term.

instance(t; s)� is true i� t� is an instance of s�.

(t � s)� is true if t� is a subterm of s�.

We require that the assertions are invariant under variable renaming (for an

assertion I and a renaming �, I� is true i� I�� is). This excludes properties related

to the identity of variables, like \the success instance will be p(f( 777))".

Note that we are able to deal with \non-monotonic" assertions (i.e. not closed

under substitution).

4 Hoare triples for uni�cation

In our method, proofs of program properties will be reduced to proving properties

of uni�cation. To express the latter we introduce a notion of a Hoare triple for

uni�cation [CM92].

De�nition 4.1 A Hoare triple for uni�cation is an expression:

fPreg fjE;F jg fPostg (1)

where E;F are expressions (of the object language) and Pre;Post are assertions. Its

intended meaning is: Post holds after unifying E and F , provided Pre held before

the uni�cation

2

. More precisely, (1) is true i�, for every substitution � and for any

most general uni�er � of E� and F�, if Pre� is true then Post�� is true.

Example 4.2 The following Hoare triples for uni�cation are true

fground(t)g fj t; s jg fground(s)g

fground(x); ground(y

0

)g fj f(x; y); f(x

0

; y

0

) jg fground(x

0

); ground(y)g

Consider the �rst of them. It holds, because if term t is ground then after unifying

it with s, s becomes ground. Formally: if t� is ground for some substitution �

(describing a \current binding of variables") then for any most general uni�er � of

t� and s� the obtained term s�� is ground.

The triple f:ground(t; s)g fj t; s jg f:ground(s)g is in general not true. To show

it, take t = f(x; y) and s = f(x

0

; y

0

) and assume that x and y

0

are bound to non-

ground terms and x

0

and y to ground terms. The precondition is satis�ed but s after

the uni�cation is ground. 2

We are interested in two particular cases, where the expressions being uni�ed

do not have a common variable and where the second of them is an instance of the

�rst. So we introduce some abbreviations.

2

Wewill also say that uni�cation ofE and F is correct w.r.t. precondition Pre and postcondition

Post .
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De�nition 4.3

We will write fPreg [[t; s]] fPostg to abbreviate fPre ^ disjoint(t; s)g fj t; s jg fPostg

and

fPreg [[t/s]] fPostg to abbreviate fPre ^ disjoint(t; s) ^ instance(s; t)g fj t; s jg fPostg.

We do not provide a formal method of proving Hoare triples for uni�cation.

Such a method was proposed in [CM92]. Instead we will use informal proofs, as

usually in mathematics. We conclude this section with stating some properties

that could be useful in such proofs. The following proposition shows that to prove

fPreg fj t; s jg fPostg it is su�cient to consider only one mgu and that it is not

necessary to consider all substitutions satisfying Pre. (It is su�cient to consider one

element for each equivalence class of substitutions equal up to renaming).

Proposition 4.4 fPreg fj t; s jg fPostg is true i� for every substitution � such that

Pre� is true, either t� and s� are not uni�able or Post�� is true for some mgu � of

t� and s�.

Let � be a renaming substitution. t� and s� are uni�able i� t�� and s�� are. If

j= Pre� and � is an mgu of t� and s� and j= Post�� then j= Pre�� and j= Post���

0

for every mgu �

0

of t�� and s��.

PROOF

If �

0

is an mgu of t� and s� then �

0

= �� for some renaming �. Post��� holds

as assertions are invariant under renaming.

Let � be a renaming. Then there exists a renaming �

�1

such that ��

�1

= ".

Let � be an mgu of t� and s�. We show that � = �

�1

� is an mgu of t�� and s��.

Obviously it is a uni�er. Assume that t��' = s��'. Then �' is a uni�er of t� and

s�, so there exists � such that �' = ��. Then ' = �

�1

�� = ��; hence � is most

general. By symmetry, if t�� and s�� are uni�able then t� and s� are. Pre�� holds

as the assertions are invariant w.r.t. renaming. Post��� holds as ��� = ��. From

the previous part of the proof it follows that Post���

0

holds for any mgu �

0

of t��

and s��. 2

Note that it is su�cient to consider � that is idempotent and relevant. (If such

a uni�er does not exist then t� and s� are not uni�able). If fPreg fj t; s jg fPostg

is fPre

0

g [[t/s]] fPostg then it is su�cient to consider � such that Domain(�) �

Vars(t�). (If s

0

is an instance of t

0

then there exists their mgu � such that t

0

� = s

0

).

Let y be the variables of s. If the triple is of the form fPre ^ free(y)g [[t; s]] fPostg

then it is su�cient to consider substitutions � that do not bind y (i.e. y\Domain(�) =

;).

5 The method

To specify run-time properties of programs we decorate their clauses with assertions:

De�nition 5.1 (Asserted clause)

H  fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g (n � 0)
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where I

0

; : : : ; I

n

are assertions and H;A

1

; : : : ; A

n

are atoms, is called an asserted

(de�nite) clause.

Expression fIgA fI

0

g, where I; I

0

are assertions and A is an atom, will be called

an atomic speci�cation (or a Hoare triple for an atom).

To specify a set of initial goals, together with their assertions we use a goal

clause.

De�nition 5.2 A goal clause is an asserted clause goal fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g

where goal is a new symbol not occurring in clause bodies. This clause speci�es a

class of goals of the form G = (A

1

; : : : A

n

)� where I

0

� is true.

By an asserted program, we mean a �nite set of asserted clauses, including goal

clauses. So an asserted program corresponds to a �nite de�nite program together

with a possibly in�nite set of initial goals. (We will often skip the word \asserted"

whenever it does not lead to misunderstanding). We are interested in all computa-

tions of such a program, beginning with goals speci�ed by (some) goal clause from

the program. By a computation we mean any LD-derivation (successful, failing or

in�nite). Speaking informally, a program is (partially) correct if, whenever the con-

trol reaches an assertion, the assertion is satis�ed. A formal de�nition is given later

on below.

We propose an inductive assertion method for proving program correctness. The

following de�nition is crucial for the method. It introduces a su�cient condition

for program correctness: if the program (including its goal clauses) is well asserted

then it is correct. (This is established as a formal result in Theorem 6.4). Checking

whether a program is well asserted boils down to checking conditions (CALL) and

(EXIT) for every (uni�able) pair of a body atom and a clause head of the program.

De�nition 5.3 (Veri�cation conditions: well-asserted program)

Atomic speci�cation S = fPregAfPostg agrees with an asserted clause C if for

some variant C

0

= H  fI

0

g � � � fI

n

g of C (n � 0) such that S and C

0

have no

common variable the following conditions hold:

fPre ^ free(y) g [[A;H ]] f I

0

g

fPre ^ I

n

g [[A/H ]] fPost g

(CALL)

(EXIT)

where y are the variables occurring in C

0

.

A program P is well-asserted if every atomic speci�cation S = fI

i�1

gA

i

fI

i

g

occurring in P agrees with every clause of P .

Obviously, conditions (CALL) and (EXIT) are trivially satis�ed if A and H are

not uni�able.

The intuitive explanation of (CALL) is rather obvious: I

0

should hold after

unifying A (with its variables instantiated in such a way that Pre holds) with (unin-

stantiated) H. Condition (EXIT) is less obvious. It models a procedure return.

Imagine that the procedure call A� had been extracted from a goal and evaluated
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in isolation. Assume that it succeeded. (EXIT) models applying the computed an-

swer substitution to the remaining atoms of the goal. The variables of H are bound

according to I

n

, the variables of the goal are bound by � (i.e. as at the moment of

the call of A�). Unifying A and H results in binding the variables of the goal as at

the success of A�.

Example 5.4

We will use an abbreviation Vars(Y ) � Vars(Z) for formula 8V: (var(V ) ^

V�Y )! V � Z.

goal 

I

0

z }| {

ffree(Y;Z) ^ Y;Z 6�Xg p(X;Y;Z)

I

1

z }| {

fVars(Y ) � Vars(Z)g :

p([AjLA]; [BjLB]; [p(A;B)jLC]) 

I

2

z }| {

ffree(LB;LC) ^ LB;LC 6�LAg

p(LA;LB;LC)

fVars(LB) � Vars(LC)g

| {z }

I

3

:

p([ ]; [ ]; [ ]) ftrueg

The veri�cation condition for this asserted program consists of the following eight

Hoare triples for uni�cation. (They are numbered with the number of the calling

and the called clause). Let F stands for formula free(A;LA;B;LB;LC).

fI

0

^ Fg

""

p(X;Y;Z)

p([AjLA]; [BjLB]; [p(A;B)jLC])

##

fI

2

g (CALL01)

fI

0

^ I

3

g

""

p(X;Y;Z) /

p([AjLA]; [BjLB]; [p(A;B)jLC])

##

fI

1

g (EXIT01)

fI

2

^ F

0

g

""

p(LA;LB;LC)

p([A

0

jLA

0

]; [B

0

jLB

0

]; [p(A

0

; B

0

)jLC

0

])

##

fI

0

2

g (CALL11)

(The renamed variables are denoted with primes, the same for the assertions with

their variables renamed.)

fI

2

^ I

0

3

g

""

p(LA;LB;LC) /

p([A

0

jLA

0

]; [B

0

jLB

0

]; [p(A

0

; B

0

)jLC

0

])

##

fI

3

g (CALL11)

fI

0

g

""

p(X;Y;Z)

p([ ]; [ ]; [ ])

##

ftrueg (CALL02)

fI

0

^ trueg

""

p(X;Y;Z) /

p([ ]; [ ]; [ ])

##

fI

1

g (EXIT02)

fI

2

g

""

p(LA;LB;LC)

p([ ]; [ ]; [ ])

##

ftrueg (CALL12)

fI

2

^ trueg

""

p(LA;LB;LC) /

p([ ]; [ ]; [ ])

##

fI

3

g (EXIT12)
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Note that (CALL11) and (EXIT11) are just renamings of (CALL01) and (EXIT01).

(EXIT02) and (EXIT12) are trivially true as the terms are ground after the uni-

�cation. The triples with the postcondition true are tautologies. So to prove the

correctness of the program it remains to prove (CALL01) and (EXIT01). Below we

treat (CALL01) with some details.

Assume that the precondition I

0

^ F holds for some �. According to section 4

we may assume that Domain(�) � fX;Y;Zg. So � binds Y;Z;A;LA;B;LB;LC

to distinct variables that, except for A�, do not occur in X�; [AjLA]�. If � is an

relevant mgu of X� and [AjLA]� and if �

0

= fY=[BjLB]; Z=[p(A�;B)jLC]g then

��

0

is an mgu of p(X;Y;Z)� and p([AjLA]; [BjLB]; [p(A;B)jLC])�.

Obviously, variables LB and LC are unbound by ���

0

and they do not occur in

LA���

0

(as LA���

0

= LA�). Hence j= I

2

���

0

. 2

It is easy to extend our method to many built-in predicates of Prolog. This

can be done by adding corresponding veri�cation conditions to De�nition 5.3. For

instance, to cover var/1, nonvar/1 and ==/2 we need the following.

If S (an atomic speci�cation occurring in the program) is of the form

fIg var(t)fJg then J is I ^ var(t).

If S = fIg nonvar(t) fJg then J is I ^ :var(t).

If S = fIg t==s fJg then J is I ^ t = s.

6 Soundness

To discuss correctness of programs we have to relate goals in LD-derivations to

assertions in the programs. We introduce a notion of an asserted goal and an

appropriate de�nition of an LD-derivation over asserted goals. This will make it

possible to state precisely what does it mean that the control reaches an assertion

and the assertion is satis�ed.

De�nition 6.1 (Asserted goal)

An asserted goal is a pair

�; fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g

where n � 0, � is a substitution and fI

i

g is a sequence of assertions (for i = 1; : : : ; n).

We refer asserted goals to the standard notion of a goal in SLD-resolution by

stating that the asserted goal above corresponds to the goal (A

1

; : : : ; A

n

)�.

Asserted goal �; fI

0

gA

1

� � �A

n

fI

n

g is an instance of a goal clause goal  

fI

0

gA

1

� � �A

n

fI

n

g i� I

0

� is true. (So the goal that corresponds to an instance of

a goal clause is one of those speci�ed, in the sense of Def. 5.2, by the goal clause).

An initial asserted goal for a program P is an instance of a goal clause of P .

(Note that the assertion sequences in G are of length 1).

De�nition 6.2 (LD-resolution) Consider an asserted goal G:

�; fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g

8



and an asserted clause C:

H  fJ

0

gB

1

� � �B

m

fJ

m

g:

Assume that G and C have no common variable and that � is an mgu of A

1

� and

H. Then

��; fJ

0

gB

1

� � �B

m

fJ

m

gfI

1

gA

2

� � �A

n

fI

n

g

is a LD-resolvent of G and C.

Let P be an asserted program. An asserted LD-derivation is a (possibly in�nite)

sequence G

0

; G

1

; : : : of asserted goals such that G

0

is an initial asserted goal for P

and G

i

is a resolvent of of G

i�1

and a standardized apart asserted clause C

i

of the

program, for i = 1; 2; : : :. (A technical detail: we do not require that a derivation is

a maximal such sequence).

The correspondence with the standard de�nition of SLD- (LD-) resolution is

obvious. If G

0

; G

1

; : : : is an asserted LD-derivation and G

i

corresponds to a (\not

asserted") goal G

0

i

, for i = 0; 1; : : :, then G

0

0

; G

0

1

; : : : is an LD-derivation. Conversely,

for a given program, let G

0

0

; G

0

1

; : : : be an LD-derivation and let G

0

be an initial

asserted goal that corresponds to G

0

0

. Then there exists an asserted LD-derivation

G

0

; G

1

; : : : whose goals correspond, respectively, to G

0

0

; G

0

1

; : : :.

Now we are ready to formalize the concept of the control reaching an assertion.

As we mainly deal with asserted clauses, goals and derivations, we will usually

skip the word \asserted". Note that if �; fI

0

gA

1

� � �A

n

fI

n

g is a goal in an LD-

derivation where fI

l

g is fI

l;1

g � � � fI

l;m

l

g (for 0 � l � n) then each of assertions

fI

l;1

g � � � fI

l;m

l

�1

g is the last assertion of some clause of the program.

Consider a goal G = �; fI

0;1

g � � � fI

0;l

gA

1

� � �A

n

fI

n

g in an LD-derivation (thus

l > 0, n � 0). Note that it can be represented as G = �;G

1

� � �G

l

� � �G

m

where

each G

i

(i = 1; : : : ;m) is a su�x of a (renamed) program clause, G

j

= fI

0;j

g for

j = 1; : : : ; l � 1 and G

l

= fI

0;l

gA

1

� � �A

k

fIg (for some I and k � n). As the

selected goal of G is A

1

, we may say that in G the control reaches fI

0;l

g. As for

j = 1; : : : ; l � 1 fI

0;j

g is the last assertion of a clause, G may be understood as

corresponding to a success of this clause. So it is natural to say that in goal G the

control reaches assertions fI

0;1

g; : : : ; fI

0;l

g.

De�nition 6.3 (Correct program)

An asserted program P is correct i� for any goal �; fI

0

gA

0

fI

1

g � � �A

m

fI

m

g (m �

0) of any its derivation, fI

0

g� holds (i.e. for each assertion I in fI

0

g, j= I�).

Theorem 6.4 (Soundness)

Every well-asserted program is correct.

PROOF

Let G

0

; G

1

; : : : be the derivation. We may assume that the mgu's used in the

derivation are relevant. The proof is by induction. The base case of G

0

is obvious.

Assume that the theorem holds for G

0

; : : : ; G

k�1

.

Let G

k�1

be �; fIgfPregAfPostg � � � and G

k

be a resolvent of G

k�1

and a clause

C = H  fI

0

g � � � fI

n

g (n � 0). Hence G

k

= ��; fI

0

g � � � fI

n

gfPostg � � �. Obviously

9



speci�cation fPregAfPostg occurs in the program. From the respective (CALL)

condition we obtain that I

0

�� holds (as Pre� holds, the variables of C are distinct

from those of G

k�1

and � is an mgu of A and H). This completes the inductive step

when n > 0; in such a case G

k

begins with a single assertion fI

0

g.

If n = 0 then G

k

= �; fJ

1

g � � � fJ

l

g � � � where � = ��, J

1

is I

0

and J

2

is Post .

We show by induction that J

2

�; : : : ; J

l

� hold. Let 1 � i < l, assume that J

i

� holds.

We show that J

i+1

� holds. As discussed previously, J

i

is the last assertion of some

clause of P .

There exist two consecutive goals

G = �

0

; fIgfPre

B

gBfPost

B

gL

G

0

= �

1

; � � � fJ

i

gfPost

B

gL

in the derivation G

0

; : : : ; G

k�1

such that L is a sequence of assertions and atoms,

G

0

is a resolvent of G and C = H

0

 � � � fJ

i

g and

G

k

= �; fJ

1

g � � � fJ

i

gfPost

B

gL

(hence Post

B

is J

i+1

). Let us consider the last G, G

0

satisfying these conditions.

We are going to construct a substitution � that, in a sense, combines the bindings

in G of the variables of fPre

B

gBfPost

B

g and the bindings in G

k

of the variables

of C.

Let x be the variables occurring in G and y the variables occurring in C. Ob-

viously x \ y = ;. Substitution � can be represented as a union of two disjoint

substitutions � = �

0

[ �

00

where �

0

= �j

x

. Notice that �

00

j

y

= �j

y

.

Let � be a renaming substitution for the variables of y�

00

into the variables not

occurring in the derivation.

J

i

� holds, hence J

i

�

00

� holds (as assertions are invariant w.r.t. variable renaming).

Pre

B

�

0

holds from the inductive assumption. disjoint(x�

0

; y�

00

�) holds due to the

choice of �. So for substitution � = �

0

[ �

00

� the precondition in the condition

(EXIT) for fPre

B

gBfPost

B

g and C holds.

Now we construct an mgu for B� and H

0

� (this means for B�

0

and H

0

�

00

�). We

have � = �

0

� where � is the composition of mgu's used in the derivation between G

and G

k

. Obviously, � is a uni�er of B�

0

and H

0

, we also have H

0

� = H

0

� = H

0

�

00

.

Hence B�

0

� = H

0

�

00

and B�

0

�� = H

0

�

00

�. Thus H

0

� = H

0

�

00

� is an instance of

B� = B�

0

and � = (��)j

B�

is the required mgu.

From (EXIT) it follows that Post

B

�� holds. Due to standardizing apart, we have

Vars(��) \ x � Vars(B�

0

). Hence � = (��)j

x

. Notice that Post

B

�� is Post

B

�

0

��

which is Post

B

��. Remember that Post

B

is J

i+1

. So from the assumption that J

i

�

holds we showed that J

i+1

�� holds. Thus J

i+1

� holds, this completes the proof. 2

7 Termination

To prove termination one usually employs a kind of measure of atoms, often called

a level mapping. We present a method similar to that introduced by Apt and

10



Pedreschi [AP93]. It uses a level mapping j j that is is a function from ground atoms

to natural numbers. We extend j j to non-ground atoms by stating

jAj = supf jA�j : A� is ground g

for an arbitrary atom A. So jAj is a natural number or jAj = !.

For a �xed level mapping j j we will add j j as a function symbol to our meta-

language of assertions (with the obvious interpretation). We transfer the concept of

an acceptable program [AP93] to our framework.

De�nition 7.1 (Acceptable program)

An asserted program P is acceptable with respect to a level mapping j j i� for

every its clause H  fJ

0

gB

1

� � �B

m

fJ

m

g; for i = 1; : : : ;m,

J

i�1

! jHj > jB

i

j

holds (for any substitution).

The de�nition may be informally explained as follows. We are interested in

the measure of the atoms selected in the LD-derivation. Assertion J

i�1

describes

the bindings of B

i

when it is selected. So we are not interested in bindings not

satisfying J

i�1

.

Theorem 7.2 (Termination 1)

All the LD-derivations of an acceptable correct program are �nite.

In the proof we will use multisets over ! + 1 (the set of natural numbers with

added !). Such multisets will be values of our level mapping for goals. We will use

a multiset ordering < obtained in a standard way from the usual ordering of ! + 1.

For de�nitions, see [AP93] or [Kun89].

De�nition 7.3 (Multiset level mapping for goals)

j fIgA j = supf jA�j : j= fIg� g

(where by j= fIg� we mean that j= J� for any element fJg of sequence fIg).

jj �; fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g jj = bag( jfI

0

gA

1

�j; : : : ; jfI

n�1

gA

n

�j )

where bag(x

1

; : : : ; x

n

) is the multiset with elements x

1

; : : : ; x

n

.

PROOF of the Theorem

Consider an acceptable correct program P . Let

G = �; fI

0

gA

1

fI

1

gA

2

� � �A

n

fI

n

g

be a goal in a derivation of P . As the program is correct, j= fI

0

g�. Let

G

0

= ��; fJ

0

gB

1

� � �B

m

fJ

m

gfI

1

gA

2

� � �A

n

fI

n

g

11



be its successor in the derivation, obtained by resolving G with a clause C = H  

fJ

0

gB

1

� � �B

m

fJ

m

g using an mgu �. We show that jjGjj > jjG

0

jj.

Let 1 � i � m. Consider a substitution ' such that j= J

i�1

��'. Then jB

i

��'j <

jH��'j = jA

1

��'j � jA

1

�j � jfI

0

gA

1

j. (The �rst inequality holds as the program

is acceptable, the others follow from the de�nition of j j for non-ground atoms and

for fI

0

gA

1

respectively). Hence j fJ

i�1

gB

i

��j < jfI

0

gA

1

j.

Note that for j = 2; : : : ; n, jfI

j�1

gA

j

��j � jfI

j�1

gA

j

�j. Hence jjG

0

jj < jjGjj, by

the de�nition of the multiset ordering. The derivation is �nite, as in the multiset

ordering there do not exist in�nite decreasing sequences. 2

8 Related work

A stimulus to undertake this work was the paper by Colussi and Marchiori [CM91].

They also proposed an inductive assertion method with assertions assigned to pro-

gram points. However, their soundness theorem concerns only the �nal answers of

successful derivations. Hence, strictly speaking, the method does not deal with run-

time properties. In contrast, our soundness theorem concerns all program points of

any derivations (including failing and in�nite ones).

The method of [CM91] requires that, in a sense, an assertion should be able to

describe the whole state of computation, not only the binding of those variables that

occur in the clause. This boils down to adding extra arguments to the predicates

and extra variables to the clauses. (It is unclear to which variables in an LD-

derivation these new variables should be referred. Hence the author believes that

for the framework of [CM91] it is impossible to de�ne what does it mean that an

assertion at a program point holds.)

A restricted version of the method of [CM91] is presented in [AM94] (conf. well-

asserted programs in Section 6 of [AM94]). That method does not use additional

variables and arguments and does prove run time properties. The veri�cation condi-

tions of our method are however simpler than the veri�cation conditions of [AM94,

Def. 6.7]. Also our notion of asserted query, used to formally de�ne the correctness

of the program, is simpler. We conjecture that our method is not less general.

9 Future work

In the presented method we have to prove a veri�cation condition for each (uni�able)

pair of a body atom and a clause head. The number of conditions to prove can be

reduced by using additional assertions, namely a pre- and a post-condition for each

predicate symbol. This would result in a veri�cation condition per each body atom

and each clause head of the program. (Hence b + h conditions instead of b � h).

Such a proof method could be seen as a simpli�cation of that of [DM88] (where

the only assertions are pre- and post-conditions for predicates). Instead of a rather

sophisticated valuation sequences of [DM88], the proposed approach would use ad-

ditional assertions for program points. This would result in simpler proofs.

Specifying run-time properties by assertions (in a way presented here) has a

12



drawback: some properties cannot be expressed. For instance, we cannot express

a fact that executing p(t) does not instantiate any variables of t; due to this our

method fails for the problem from Example 6.6 in [AM94]. To be able to deal with

such properties one may employ binary assertions, as done in [DM88]. (The opinion

stated in [AM94] that this example cannot be dealt with by the method of [DM88],

is not true.) Binary assertions refer to a pair of states, instead of a single state. For

example, we can use an assertion stating that the success instance of p(t) is a variant

of its call instance. Generalization of the presented method to binary assertions is

a subject of further work.
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