On Correctness of
Normal Logic Programs

Wtodek Drabent

Institute of Computer Science, Polish Academy of Sciences (IPI PAN);

IDA, Linkdpings universitet, Sweden

www.ipipan.waw.pl/~drabent/

LOPSTR 2022 2022-09-23

Version 1.1 compiled October 5, 2022

1/ 21

www.ipipan.waw.pl/~drabent/

Introduction Semantics

Outline
proving correctness of normal logic programs

» Introduction (..., semantics, specifications, correctness)
» Proving correctness, approach 1

» Proving correctness, approach 2
>

Comparison with proving correctness w.r.t.
the well-founded semantics

» Summary

2/ 21

Introduction

Reasoning about program properties

Correctness
(program results compatible with the specification)

In LP (logic programming), also
Completeness
(the program produces everything required by the specification)

This work — correctness of normal logic programs
(programs with negation as finite failure)

3/ 2

Introduction Semantics

Note (on logic)

Natural to use a 4-valued logic (of Belnap)

t — success

f — failure

u — divergence

tf — success or failure

Will be encoded in the standard 2-valued logic.

412

Introduction Semantics

Semantics
NAF, NAFF (negation as finite failure), SLDNF-resolution

We have it in Prolog when sound usage of negation:

A fails — A succeeds

A succeeds with a most general answer
— failure of -4

otherwise — floundering

5/ 21

Introduction Semantics

Semantics
NAF, NAFF (negation as finite failure), SLDNF-resolution

We have it in Prolog when sound usage of negation:

A fails — A succeeds

A succeeds with a most general answer
— failure of -4

otherwise — floundering

Declarative semantics [Kunen]. 3-valued logic (t,f,u).

comp(P) =3 @Q for answers @)
comp(P) =3 ~Q for failed queries @

of P
Th: comp(P) =3 F it T3ptnl=s F forsomen <w
i)

T4PTTL ’:4F

5/ 21

Correctness Ex.specification Def. correctness

Program correctness, specifications

Without negation

Specification: an Herbrand interpretation St € HB
— the ground atoms allowed to be true

6/21

Correctness Ex.specification Def. correctness

Program correctness, specifications

Without negation

Specification: an Herbrand interpretation St € HB
— the ground atoms allowed to be true

P correct w.rt. St: St = Q for each answer @ of P.

Proving correctness [Clark'78|
Th.: P correct w.rt. St if St = P.

Obvious, important, neglected
Applicable in practice

6/21

Correctness

Program correctness, specifications

Without negation

Specification: an Herbrand interpretation St € HB
— the ground atoms allowed to be true
With negation
Specification: (St, Snf) € HB?
St — as above
Snf — atoms not allowed to be false

-~

St \ Snf - tf
St N Snf -t
HB tf
HB\ Snf \ St -
Snf \ St -u
suggess faiEre

6/21

Correctness Ex. specification Def. correctness

Specification, example

A specification for a program defining a list membership predicate m
is (Sty, Snfm), where

Snfm:{m<€i7[€17"'7en]) EHB | 1 SZSTL}7
Sty = Snfy, U{m(e,t) € HB | t is not a list }.

So

m(e,t) may be true when if ¢ is a list then e is a member of ¢

m(e,t) may be false when it is not of the form m(e;, [e1, ..., e,])
(1<i<n)

7121

Correctness

Correctness, definition

St
Snf
—
success failure

Non atomic queries?

8/ 21

Def. correctness

P correct w.rt. (St, Snf):
for each atom A
A is an answer of P
= StEA
Afaills = Snf = -A

Correctness Def. correctness

Correctness, definition
St
Snf P correct w.rt. (St, Snf):

for each atom A
A is an answer of P
HB tf

Afails = Snf = -4

success failure

Non atomic queries?

Notation: New predicate symbol p' for each p
For programs, queries, ...
Q" - @ with p ~ p/ in each negative literal
Q" — @ with p ~ p’ in each positive literal
For interpretations
St — St with p ~ p’ in each literal

8/ 21

Correctness Def. correctness

Correctness, definition
St
Snf P correct w.r.t. (St, Snf):

for each atom A
A is an answer of P
HB tf

Afails = Snf = —A

success failure

Non atomic queries?

P correct w.rt. (St, Snf): For each query @
StUSnf' = Q' if Q is an answer of P
St U Snf' E-Q" if Q fails

Formally: comp(P) E3 Q = StusSnf = Q'
comp(P) 5 ~@ = 51U Snf’ =@

8/ 21

Correctness Ex.specification Def. correctness

A detail for the next slide
StU Snf’ k= L" means that in L

each positive literal L; € Snf
each negative literal L; = =A;: A; ¢ St

9/ 2

Approach 1

Proving correctness. Approach 1

Df.: Atom A € HB weakly covered by clause C' w.r.t. spec = (St, Snf)
if 3 a ground instance A < L of C such that St U Snf’ = L.

Informally: A can be produced by C' out of literals which cannot be false

(according to spec).
Df.: A weakly covered by program P if covered by some C' € P.

Intuition: Such A cannot be made false.

Th.(Cor.1): P is correct w.r.t. spec = (St, Snf) if
1. StuSnf' = P, and
2. each atom A € Snf is weakly covered by P w.r.t. spec.

10 / 21

Approach 1

Proving correctness. Approach 1
Df.: Atom A € HB weakly covered by clause C' w.r.t. spec = (St, Snf)
if 3 a ground instance A < L of C such that St U Snf’ = L.
Informally: A can be produced by C' out of literals which cannot be false
(according to spec).
Df.: A weakly covered by program P if covered by some C' € P.

Intuition: Such A cannot be made false.

Th.(Cor.1): P is correct w.r.t. spec = (St, Snf) if
1. StuSnf' = P, and
2. each atom A € Snf is weakly covered by P w.r.t. spec.

Similarities with methods for programs without negation
1. — condition for correctness
2. — part of condition for completeness

10 / 21

Approach 1 Ex. 2 3

Example

Program SS:
ss(L, M) < —nss(L, M). % subset
nss(L, M) < m(X,L),~m(X, M). % non subset
m(X, [X|L]). % member

m(X,[Y|L]) + m(X, L).

Specification (St, Snf),
St = Stss U Stpss U Stm, Snf = Snfss U Snfpss U Snf,

Stss = {ss(l,m) € HB |l and m are lists -1 Cm },
Snfss = {ss(l,m) € HB |l and m are lists A\l Cm},
Stnss = {mnss(l,m) e HB |l and m are lists =1 Z m },
Snfnss = {mnss(l,m) € HB |l and m are lists A\l € m },
Sty = SnfmU{mle,t) € HB |t is not a list }.

Snfu = {mlesler,. .. ea)) €HB|1<i<n},

11 /21

Approach 1 Ex. 2 3

Example (2)

Let us take the least obvious part of the proof.

C = nss(L,M) < m(X,L),~m (X, M).

Stnss = {nss(l,m) € HB |l and m are lists - < m },
Snfm = {M(e“[el,,en])G'HB|1§z§n},
Stm = Snf,, U{m(e,t) € HB |t is not a list }.

Showing 1. St U Snf’ = C'

12 /21

Approach 1 Ex. 2 3

Example (2)

Let us take the least obvious part of the proof.

C" = nss(L,M) < m(X,L),~m/(X,M).

Stnss = {nss(l,m) € HB |l and m are lists - < m },
Snfm = {M(e“[el,,en])G'HB|1§z§n},
Stm = Snf,, U{m(e,t) € HB |t is not a list }.

Showing 1. St U Snf’ = C'

Take a ground instance C'0 = nss(l,m) < m(x,l),~m/(x,m).
Assume the body is true, m(z,l) € St, m/(x,m) & Snf’.
I,marelists = xelandz¢m = [Em

= nss(l,m) € Stpss.

12 /21

Approach 1 Ex. 2 3

Example (2)

Let us take the least obvious part of the proof.

C" = nss(L,M) < m(X,L),~m/(X,M).

Stnss = {nss(l,m) € HB |l and m are lists - < m },
Snfm - {M(e“[el,,en])G'HB|1§z§n},
Sty = Snf,, U{m(e,t) € HB | t is not a list }.

Showing 1. St U Snf’ = C'

Take a ground instance C'0 = nss(l,m) < m(x,l),~m/(x,m).
Assume the body is true, m(z,l) € St, m/(x,m) & Snf’.
I,marelists = xelandz¢m = [Em

= nss(l,m) € Stpss.

12 /21

Approach 1 Ex. 2 3

Example (2)

Let us take the least obvious part of the proof.

C" = nss(L,M) < m(X,L),~m/(X,M).

Stnss = {nss(l,m) € HB |l and m are lists - < m },
Snfm = {m(eia[ela"'aen])EHBl]-Sign}v
Stm = Snf,, U{ml(e,t) € HB |t is not a list }.

Showing 1. St U Snf’ = C'

Take a ground instance C'0 = nss(l,m) < m(x,l),~m/(x,m).
Assume the body is true, m(z,l) € St, m/(x,m) & Snf’.
I,marelists = xelandz¢m = [Em

= nss(l,m) € Stpss.

12 /21

Approach 1 Ex. 2 3

Example (2)

Let us take the least obvious part of the proof.

C" = nss(L,M) < m(X,L),~m/(X,M).

Stnss = {nss(l,m) € HB |l and m are lists - [< m }.
Snfm = {M(e“[el,,en])G'HB|1§z§n},
Stm = Snf,, U{m(e,t) € HB |t is not a list }.

Showing 1. St U Snf’ = C'

Take a ground instance C'0 = nss(l,m) < m(x,l),~m/(x,m).
Assume the body is true, m(z,l) € St, m/(x,m) & Snf’.
I,marelists = xelandz¢m = [Em

= nss(l,m) € Stpss.

12 /21

Approach 1 Ex. 2 3

Example (3)

C = nss(L,M) <« m(X,L),~m(X, M).

Snfnss = {mss(l,m) € HB |l and m are lists A\l Z m },
Snfm = {m(e’w[eh7€n]>€HB|1SZ§n}7
Sty = SnfnU{mle,t) € HB |t is not a list }.

Showing 2. Each A € Snf,,ss weakly covered by C.

Assume nss(l,m) € Snfpss.

= [,marelists, [€m = dxzel xdm

nss(l,m) < m(xz,l),~m(x,m) is the required instance of C,
as m(x,l) € Snf, m(x,m) & St.

13/ 21

Approach 1 Ex. 2 3

Example (3)

C = nss(L,M) <« m(X,L),~m(X, M).

Snfnss = {nss(l,m) € HB |l and m are lists A\l Z m }.
Snfm = {m(e’w[eh7€n])€HB|1SZ§n}7
St = SnfnU{mle,t) € HB |t is not a list }.

Showing 2. Each A € Snf,,ss weakly covered by C.

Assume nss(l,m) € Snfpss.

= [,marelists, [€m = dxzel, xdm

nss(l,m) < m(xz,l),~m(x,m) is the required instance of C,
as m(x,l) € Snf, m(x,m) & St.

13/ 21

Approach 1 Ex. 2 3

Example (3)

C = nss(L,M) <« m(X,L),~m(X, M).

Snfnss = {mss(l,m) € HB |l and m are lists A\l Z m },
Snfm = {m(e’w[eh7€n]>€HB|1SZ§n}7
Sty = SnfnU{mle,t) € HB |t is not a list }.

Showing 2. Each A € Snf,,ss weakly covered by C.

Assume nss(l,m) € Snfpss.

= [,marelists, [€m = dxzel xdm

nss(l,m) < m(xz,l),~m(x,m) is the required instance of C,
as m(x,l) € Snf, m(x,m) & St.

13/ 21

Approach 1 Ex. 2 3

Example (3)

C = nss(L,M) <« m(X,L),~m(X, M).

Snfnss = {nss(l,m) € HB |l and m are lists A\l Z m },
Snf’m = {m(eia[617"’aen])€HB|1§i§n}7
St = SnfnU{mle,t) € HB |t is not a list }.

Showing 2. Each A € Snf,,ss weakly covered by C.

Assume nss(l,m) € Snfpss.

= [,marelists, [€m = dxzel, xdm

nss(l,m) < m(xz,l),~m(x,m) is the required instance of C,
as m(x,l) € Snf, m(x,m) & St.

13/ 21

Approach 1 Ex. 2 3

Example (3)

C = nss(L,M) <« m(X,L),~m(X, M).

Snfnss = {nss(l,m) € HB |l and m are lists A\l Z m },
Snfm - {m(e’w[eh7€n])€HB|1SZ§n}7
St = SnfnU{mle,t) € HB |t is not a list }.

Showing 2. Each A € Snf,,ss weakly covered by C.

Assume nss(l,m) € Snfpss.

= [,marelists, [€m = dxzel, xdm

nss(l,m) < m(xz,l),~m(x,m) is the required instance of C,
as m(x,l) € Snf, m(x,m) & St.

13/ 21

Approach 2 Adjusted Th

Limitation of Approach 1

Some facts cannot be proved.

Roughly
— we prove correctness w.r.t. the least fixed point of T3p

— the semantics of P is given by comp(P) =3, or T3p Tn
(n <w)

Ex: P p<+ q(X).
q(s(X)) = q(X).

Correct w.rt. (St, Snf) = (0, {p}). (pis u, each ¢(t) is f.)
The Lfp. — everything is f

14 | 21

Approach 2 Adjusted Th

Proving correctness. Approach 2

(Slightly modified w.r.t. the paper)

Introducing
level mappings, | |: HBU-HB — NU {w},

restrictions on |L| and the levels of L; on which L depends
(in P).

15/ 21

Adjusted | |

Df.: | | adjusted to P and spec = (St, Snf) if

1. for each A € St,

|A| <1+ min { max{|L|: L € L} ' AeLe ground(P),}

StUSnf = L'

2. for each A € HB\ Snf,
~Al <

1 + max { min{ |L|

3. for each A € Snf \ St,

Lel, -
StU Snf’ 1= (ﬁL)’} ‘A «— Le ground(P)},

Al = |-4] = w.
(max () = 0, min () = w)

16 / 21

Approach 2 Adjusted Th.

Sufficient condition. Approach 2

Th.(11): P correct w.r.t. spec = (St, Snf) if
3| | adjusted to P, spec such that

1.V A+ L € ground(P),

if StUSnf' = L' then A € St or |A| = w;
2.VA€Snf YVmeN B

JA«L € ground(P) VYLe€L,

|L| >m or StUSnf' = L".

Ex.(12): Correctness of {p < ¢(X). q(s(X)) «+ ¢(X).}
w.rt. (St, Snf) = (0,{p}).

1. holds trivially (clause bodies are false)

2. |q(s%(u))| = i where u not of the form s(t)

17 | 21

The well-founded semantics (WFS)

[Ferrand,Deransart’93]

| | into a well-ordered set (W, <)

Th.: P correct w.r.t. spec = (St, Snf) under WFS if
1. StU Snf’): P’, and < as in Th.Cor. 1

2. 3 a level mapping | |: Snf — W
VA € Snf JA«+L € ground(P)

21 StU Snf' = L, and « as in Th.Cor. 1
2.2 for each positive literal L from L, |L| < |A]. + the difference

18 / 21

The well-founded semantics (WFS)

[Ferrand,Deransart’93]

| | into a well-ordered set (W, <)

Th.: P correct w.r.t. spec = (St, Snf) under WFS if
1. StU Snf’): P’, and < as in Th.Cor. 1

2. 3 a level mapping | |: Snf — W
VA € Snf JA«+L € ground(P)

21 StU Snf' = L, and « as in Th.Cor. 1
2.2 for each positive literal L from L, |L| < |A]. + the difference

Ex: P = {p < p}, spec = (St,Snf) = (0,{p})

Correct under Kunen semantics, by Th. Cor. 1
Not correct under WFS; 2.2 does not hold

18 / 21

End PS

Summary

» Normal programs, Kunen semantics (NAFF, SLDNF-resolution)
i.e. sound usage of negation in Prolog

» 4-valued logic encoded in standard 2-valued FOL

» Two sufficient conditions for program correctness
Th. Cor.1 based on [D_,Mitkowska'05]
Th. Cor. 2 new

» Th.Cor.1 can be

» seen as formalization of common sense reasoning
» (informally) applied in practice

» Future work (cooperation welcome)

» Proving program completeness
» Formalizing specifications and proofs
» Correctness for ASP (Answer Set Programs)

www.ipipan.waw.pl/“drabent/

19 / 21

www.ipipan.waw.pl/~drabent/

End P.S

Thanks!

for your attention

20/ 21

End PS.

Note. A limitation

Specifications as used here cannot express that

all ground instances Q0 of () are possible answers (of a program)

but) is not.
(Such program/queries exist.)

Because
if I = Q40 for each ground Q6

then I = Q

(Do we need this?)

21/ 21

	Introduction
	Semantics

	Correctness
	Ex.specification
	Def.correctness

	Approach1
	Ex.
	2
	3

	Sufficient condition 2
	Adjusted
	Theorem

	Well-founded semantics
	Summary
	P.S.

